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Chemometrical models for determination of milk fatty acids (FA) are typically developed using spectral

data from a single spectroscopy technique, e.g., mid-infrared spectroscopy in milk control. Such models

perform poorly in determining minor components and are highly dependent on the spectral data source

and on the type of matrix. In milk fat, the unsuccessful determination of minor (fatty acids lower than

1.0 g/100 g in total fat) FA is often the result of: (1) the molecular structure similarity between the

minor and the major FA within the milk fat matrix (thus the chemical signature specific to individual

fatty acids has restricted specificity), and (2) the low signal intensity (detection limit) for specific

vibrational modes. To overcome these limitations, data from different types of spectroscopy techniques,

which brings additional chemical information in relation to the variation of the FA, could be included in

the regression models to improve quantification. Here, Fourier transform (FT) Raman spectra were

concatenated with attenuated total reflectance FT infrared (ATR/FTIR) spectra. The new combinatorial

models showed up to 25% decrease in the root mean squared error of cross-validation (RMSECV) values,

accompanied with a higher Rcv
2 for most individual FA or sums of FA groups, as compared to regression

models based on Raman only or ATR/FTIR only spectra. In addition, improved models included less PLS

components indicating an increased robustness. Interpretation of the most contributing regression

coefficients indicated the value of newly combined spectral regions as carriers of specific chemical

information. Although requiring additional spectroscopy instrumentation and prolonged acquisition

time, this new combinatorial approach can be automated and is sufficient for semi-routine determination

of the milk FA profile.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The animal production and food control fields are conti-
nuously evolving via advancements in analytical methodologies.
Spectroscopy-based analytical techniques are particularly useful
for disease and health condition screening and manufacturing
process control, which when combined with accurate reference
data and appropriate statistical methods can provide fast answers
to the composition of various types of samples. The spectral bands
not only depend on the types of chemical bonds, but are also
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correlated to their amounts present in the sample, which makes
them very useful in quantification tasks [1]. Quantifications of
fatty acids in different oil and food matrices via vibrational
spectroscopy techniques have been intensely studied [2]. Knowl-
edge of the fatty acids composition in milk is of importance to
human health [3] and could provide useful information on the
health status of dairy animals [4]. But milk has a complex fat
matrix containing over 400 different fatty acids [5]. Due to their
large number and structural variety, determination of milk fatty
acids is considered a very difficult task not just by vibrational
spectroscopy techniques, but also by conventional chromatogra-
phy methods. Quantification of minor (r10 g/kg milk fat) milk
fatty acids using vibrational spectroscopy becomes especially
difficult in raw milk, due to the presence of other milk compo-
nents, which interfere with fatty acid specific signals [6]. Minor
fatty acid quantifications might also be difficult even when only
the spectrum of milk fat is used for determinations [7]. In such
cases, as well as when the constituent of interest is very minor
(o0.5 g/100 g) and exhibits weak molecular vibration signals
with hard to detect variations in concentration, new approaches
x.doi.org/10.1016/j.talanta.2013.02.034i
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dealing with determinations of the milk fatty acid profile are
required. One such novel approach would be to combine the
spectrum of a milk fat sample from two different spectroscopy
techniques and use the concatenated spectra for construction of
better minor fatty acid determination models.

Infrared [IR, near-IR (NIR) and mid-IR (MIR)] and Raman
spectroscopy are the main vibrational spectroscopy techniques
proven useful in various routine and screening tasks, but there is
a limit to the amount and the specificity of the information a
particular technique provides [2]. The difference lies in the phe-
nomenon behind each spectroscopy technique. IR represents a
direct light absorption process and Raman spectroscopy is a light
scattering process. In NIR, the absorbance bands are the overtones
of the fundamental bands occurring in the MIR region. NIR bands
are relatively weak, overlapped and are not clearly delineated. NIR
is considered the least progressive of all vibrational spectroscopy
techniques for the current task. In contrast, attenuated total
reflectance Fourier transform mid-IR (ATR/FTIR) and Raman spec-
troscopy methods both measure the energy required to change
fundamental vibrational and rotational energy states of chemical
bonds. However, the absorption (ATR/FTIR) and scattering (Raman)
phenomena have different rules governing their occurrence and
thus offer differing sensitivities to the same functional groups, e.g.
some vibrational transitions that are observed in IR spectroscopy
are not observed in Raman spectroscopy. This results in different
amounts of chemical information for the same compound by each
technique, which makes the techniques complementary. Never-
theless, organic functional groups exhibit characteristic and well
delineated bands when analyzed using ATR/FTIR and Raman
spectroscopy. For example, the fatty acids’ C¼O carbonyl group
is the most intensive MIR active absorption bands, whereas carbon
double bonds C¼C have strong isolated Raman scattering bands [8].
As a result of the sensitivity for various functional groups and the
fundamental nature of the signal, Raman and ATR/FTIR can readily
provide more useful analytical data as compared to NIR. All these
features make Raman and ATR/FTIR ideal candidates in the new
concatenation approach. Thus, here the spectra from both methods
were combined for the first time in order to construct regression
models for the determination of milk fatty acids.
2. Materials and methods

2.1. Sample selection

The sample storage and selection methodology was previously
described [7]. Briefly, a total of 100 milk samples were selected from
a sample bank (n¼1033) of six different cow feeding experiments [7].
The sample subset was selected using a genetic algorithm applied to
cover the naturally occurring concentration range of several milk
fatty acids of interest, in particular odd and branched chain saturated
fatty acids and several trans-C18:1 and cis/trans-C18:2 unsaturated
isomers [9]. The milk fat was extracted using a previously described
methodology involving dichloromethane–ethanol [10].

2.2. GC reference data

Quantification of trans fatty acids (TFA) and fatty acid groups using
spectral data requires precise Gas Liquid Chromatography (GC)
reference data for the construction of mathematical models. Identi-
fication and quantification of TFA through GC have been greatly
improved with new highly polar, long capillary columns, but direct
GC without prior fractionation could show overlapping between
different trans-n and cis-n C18:1 positional isomers and trans-n
C16:1 coelution with specific branched chain saturated and cis-n

C16:1 mono-unsaturated FAs, which might result in an
Please cite this article as: I. Stefanov, et al., Talanta (2013), http://d
underestimation of the total TFA content [7,11]. Here, we used the
temperature dependency of the polarity of cyanopropyl phases [12]
to mathematically deduce concentrations of overlapping fatty acids
using two different temperature programs without prior fractiona-
tion. A similar approach was described before [7,13,14]. After extrac-
tion, all samples were methylated [10] and fatty acid methyl esters
(FAME) were analyzed by GC according to Vlaeminck et al. [15] (first
temperature program) and by an isothermal (T¼180 1C) (second)
temperature program. Implementation of both temperature programs
without prior separation on silver ion thin-layer chromatography
(Agþ TLC), allowed quantification of individual trans monounsatu-
rated FA, which coelute with branched chain saturated and specific
cis-n monounsaturated FAs when only one GC temperature program
is used. Due to a different separation with the second temperature
program, most FA could be quantified individually as previously
described [7,13]. As coelution of FA also depends on the column
status, the identity of the FA and coeluting bands regularly requires
confirmation by injections of Agþ TLC fractions. Due to a limited
sample quantity for 8 of the 100 selected samples, GC profile
reference data was available for 92 milk fat samples only.

2.3. Vibrational spectroscopy analysis

2.3.1. Fourier transform Raman spectroscopy

All Raman spectra were acquired on a Vertex 70—RAM II
Bruker Fourier transform Raman spectrometer (Bruker Analytical,
Madison, WI). The instrument is equipped with a Nd:YAG laser
(yttrium aluminum garnet crystal doped with triply ionized
neodymium) with an output at 1064 nm (9398.5 cm�1). The
maximum of the laser power is 1.5 W. The measurement acces-
sory is pre-aligned, only the Z-axis of the backscattered light was
adjusted to set the sample in the appropriate position regarding
the local point and to maximize the scattering intensity. The 1801
backscattering refractive geometry, CaF2 beam splitter, and liquid
nitrogen-cooled Ge diode array detector have been used. The
OPUS 6.5 software for Windows of Bruker Instruments was used
for the instrument management, spectral acquisition and file
transformation. The spectral data were obtained with a resolution
of 4 cm�1 and a nominal laser power of 600 mW. Milk fat samples
and pure FA standards (�0.1–0.5 g/sample) were analyzed in
vials selected by CRA-W in previous Fourier transform Raman
analysis [8] with PE-caps (Klaus Ziemer GmbH, Mannheim,
Germany), at room temperature (�25 1C) (RT) and immediately
after freezing at �80 1C (FT). To ensure homogenization of the
milk fat, all samples were melted at 3871 1C in a water bath, at a
minimum of 1 h prior to temperature treatment. For each spec-
trum, 64 scans were co-added and averaged to obtain a good
signal-to-noise ratio. A total of 3734 data points were recorded
from 0 to 3599 cm�1. Because of very low milk fat quantity in 14
and extraction solvent contamination in 3 of all 92 selected
samples, Fourier transform Raman spectroscopy data in RT and
FT were available for 75 milk fat samples.

2.4. ATR/FTIR spectroscopy

All attenuated total reflectance Fourier transform mid-infrared
(ATR/FTIR) spectra were acquired on a Vertex 70RAM II Bruker
spectrometer (Bruker Analytical, Madison, WI) operating with a
Golden Gate TM diamond ATR accessory (Specac Ltd., Slough, UK).
The internal reflection element was a small, non-temperature-
controlled Type IIa diamond prism allowing a sampled diameter
of approximately 2.0 mm. The optically dense medium was in
contact with two ZnSe focusing lenses, one used to focus the
incident infrared radiation and the second one to collect the
reflected infrared radiation. The optical bench included an inter-
ferometer with a RockSolid configuration, KBr substrate beam
x.doi.org/10.1016/j.talanta.2013.02.034i
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Scheme 1. Combinatorial models for concatenation of attenuated total reflectance

Fourier transform mid-infrared (ATR-FTIR) and Raman spectra obtained at room

temperature (RT), after freezing at �80 1C (FT) and a combined RT and FT (RFT) of

milk fat using a backward variable elimination approach as indicated in Scheme 2.
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splitter and a deuterated triglycerin sulfate (RT-DLaTGS) detector.
The OPUS 6.5 software for Windows of Bruker Instruments was
used for instrument management, spectra acquisition and OPUS
JCAMP to JCAMP-DX file transformation. The spectra were col-
lected against air as a background over the wavenumber range of
4498–500 cm�1 with a resolution of 4 cm�1. To ensure homo-
genization of the milk fat, all samples were melted in a 3871 1C
water bath in vials selected by CRA-W in previous Fourier trans-
form Raman analysis [16], at a minimum of 30 min prior to
spectra acquisition. A small portion of each milk fat sample and
FA standard (�0.1 g/sample) was placed on top of the optical
medium and spectra were immediately acquired [room tempera-
ture (�2472 1C)], as well as selected FA standards were analyzed
after freezing at �80 1C. For each spectrum, 64 scans were co-
added and averaged to obtain a good signal-to-noise ratio. A total
of 2074 data points were recorded from 4498-500 cm�1. Because
of very low milk fat quantity in 14 and extraction solvent
contamination in 3 of all 92 selected samples, ATR/FTIR spectra
were available for 75 milk fat samples. For each milk fat sample,
ATR/FTIR and spectra were acquired in duplicate and the average
of the two spectra was used for chemometrical analysis.

2.5. Data treatment

Data incorporation and standard partial least squares (PLS)
regression were performed similarly to previous methodology [7].
A novel approach combining spectra from two different types of
vibrational spectroscopy techniques was implemented by con-
catenation of the ATR/FTIR (n¼1241) and Raman (n¼3734)
spectrum of each milk fat sample. However, the ATR/FTIR and
Raman techniques are different in nature, thus each type of
spectrum might require different pre-treatment, derivative trans-
formation and variable (region) pre-selection methods:
Better than
previous?

NoYes

Take previous as 

�

Scheme 2. Backward variable elimination strategy.

P

Multiplicative scatter correction (MSC) is considered adequate
for Raman spectra pre-treatment and no difference between
MSC or standard normal variate (SNV) was previously reported
for ATR/FTIR spectra [17], thus MSC was the pre-treatment
method of choice.

�
 ATR/FTIR based PLS models showed best results after deriva-

tive transformation on the full range spectrum [17].

�
 Raman spectra acquired at different temperature conditions

[room temperature (RT) and after freezing the milk fat at
�80 1C (FT)], as well as the combination of spectra of samples
at both temperatures (RFT) showed opportunity for better
predictions [7,8].

�
 Raman based PLS models included full spectra or manually

selected regions (1650 variables) that are commonly believed
to be the chemical information carriers (3100–2600 and 1850–
750 cm�1) [16].

Thus, in order to examine the performance of the different
models, all possible combinations of the ATR/FTIR spectra without
derivative transformation, after 1st Savitzky–Golay (SG) derivative
or after 2nd SG derivative transformation with RT, FT and RFT
Raman milk fat spectra (Scheme 1) were subjected to a backward
variable elimination procedure (Scheme 2) using the ‘‘jackknifing’’
variable selection method with PLS (NIPALS algorithm) in The
UnscramblerTM software (CAMO, Trondheim, Norway). This back-
ward variable elimination approach resulted in 18 different PLS
models for each individual fatty acid (FA) and FA groups [mono-
unsaturated trans fatty acids (MUFA): trans-4 C18:1, trans-5 C18:1,
trans-6þ7þ8 C18:1, trans-9 C18:1, trans-10 C18:1, trans-11 C18:1,
trans-12 C18:1, trans-15 C18:1 and total low, mid and high trans

MUFA; conjugated linoleic acids (CLA): cis-9, trans-11 C18:2 and
lease cite this article as: I. Stefanov, et al., Talanta (2013), http://d
trans-10, cis-12 C18:2; total CLA; odd and branched chain saturated
fatty acids (OBCFA): iso C13:0, ante C13:0, iso C14:0, iso C15:0, ante

C15:0, C15:0, iso C16:0, iso C17:0, ante C17:0 and C17:0, total ODD
(sum of C5:0, C7:0, C9:0, C11:0, C15:0, C17:0, C19:0, C21:0, C23:0),
total ISO (sum of iso C13:0, iso C14:0, iso C15:0, iso C16:0, iso C17:0
and iso C18:0), total ANTE (sum of ante C13:0, ante C15:0 and ante

C17:0), total BRANCHED (sum of ISO and ANTE) and total OBCFA
(sum of ODD and BRANCHED)].

However, the extraction of an optimal set of wavenumbers
specific to fatty acids using this backward variable elimination
procedure (used to select variables that correlate with the
measured parameter and to reject data from absorbance and
scattering bands not contributing to the prediction) might be
obscured from the high dimensionality of the so combined ATR/
FTIR and Raman spectra. For this, a forward [pre-selecting the
best Raman only predictors (based on previous PLS models using
Raman spectra only [7,8]) and then combining them with the
ATR/FTIR spectrum] variable selection methodology was evalu-
ated (Scheme 3). The so pre-selected Raman bands were com-
bined with either:
�

x.do
the full (n¼1241) ATR/FTIR spectra (Scheme 3A);

�
 manually selected ATR/FTIR regions, which are commonly

believed to be the most important signal carriers [18]
(Scheme 3B);
i.org/10.1016/j.talanta.2013.02.034i
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�
 variables from the ATR/FTIR spectra, which had greater than
R240.50 cross-correlation with the best Raman only pre-
selected predictors (Scheme 3C).

This forward variable selection approach was expected to
preserve the most useful spectral information and lower the
complexity of the data matrix, which should result in simpler
and more robust FA prediction models. The former resulted in
three additional regression models (for a total of 21 PLS models)
for each individual and grouped FA of interest. For all PLS models
validation was carried out using systematic cross-validation with
3 folds and 25 units per segment. The optimal number of PLS
factors used for the regression was determined from the mini-
mum residual validation variance.
3. Results

3.1. PLS regression

3.1.1. Variable selection

The new combinatorial models based on backward variable
elimination (Scheme 2) showed an improved or similar perfor-
mance for at least one combination of attenuated total reflectance
Fourier transform mid-infrared (ATR/FTIR) spectra (without deri-
vative, 1st or 2nd Savitzky–Golay derivative) and Raman (RT, FT
or combined RFT) spectra, compared to models with individual
ATR/FTIR only or individual Raman only spectra. The combinator-
ial results presented in Tables 2 and 3 show the fatty acid (FA)
models with the highest cross-validation coefficient of determi-
nation (Rcv

2 ) and the lowest root mean squared error of cross-
validation (RMSECV) parameters. The percent improvements over
previously reported results for individual ATR/FTIR only and
Raman only spectra models are presented in Figs. 1 and 3 and
Figs. 2 and 4, respectively.

In contrast, the forward variable selection approach (Scheme 3)
most models for prediction of individual and grouped FA (results
not shown), with an average between 10% and 40% lower
Please cite this article as: I. Stefanov, et al., Talanta (2013), http://d
performance (based on lower R2cv and higher RMSECV) compared
to single spectra models.

3.2. Saturated OBCFA

The best combinatorial models for both individual odd chain
fatty acids C15:0 and C17:0 were somewhat improved over the
optimal single Raman models (Fig. 3) and drastically better than
the best single ATR/FTIR models (Fig. 1). While C15:0 and all other
fatty acid improvements were achieved using a backward variable
selection strategy, the C17:0 was the only FA determined better
when a forward variable selection method was used.

Not surprisingly, the total saturated odd chain fatty acid group
(ODD) was influenced by the individual FA improvements and the
optimal ODD group model had more than 11% decrease in
RMSECV compared to Raman only (Fig. 3). Similarly, the OBCFA
model was also influenced by the C15:0 presence (Supporting
materials, Fig. SM1) and variables in the vicinity of 1302 cm�1

(ATR/FTIR) and 1040 cm�1 (Raman) also occurred as significant
regression coefficients in the best OBCFA combinatorial model.

3.3. ISO

All iso branched chain FA combinatorial models, except for iso

C15:0, had improved Rcv
2 and RMSECV parameters (Figs. 1 and 2).

But while the iso C13:0 and iso C17:0 models promised sufficient
for semi-routine determinations, the performance of the best iso

C14:0 and iso C16:0 combinatorial models remained poor. The
best iso C17:0 combinatorial model resulted in 20% increase in
Rcv

2 , reaching 0.80 with a 25% lower RMSECV (0.025) and only four
PCs (Table 2, Fig. 2).

Combinatorial models for one of the least abundant branched
chain fatty acids iso C13:0 (very minor concentration of less than
0.1 g/100g) obtained the largest gain compared to all other
OBCFA. This was the result of combined signals from the ATR/
FTIR and RFT Raman spectra, which were similar compared to the
previously reported iso specific signals [7], but slightly shifted
(Supporting materials, Fig. SM2). In addition, other bands from
x.doi.org/10.1016/j.talanta.2013.02.034i
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Table 1
Concentration range of individual and grouped trans monounsaturated (trans

MUFA), conjugated linoleic (CLA) and odd and branched chain (OBCFA) fatty acids

in milk fat (g/100 g of FAME, n¼75).

Fatty acid Min Max Average Std. Dev.

C18:1trans-4 0.006 0.074 0.020 0.010

C18:1trans-5 0.006 0.108 0.018 0.015

C18:1trans-6þ7þ8 0.105 1.079 0.254 0.157

C18:1trans-9 0.113 1.155 0.232 0.181

C18:1trans-10 0.113 11.74 0.945 2.320

C18:1trans-11 0.170 4.925 0.950 0.908

C18:1trans-12 0.125 1.424 0.316 0.220

C18:1trans-15 0.023 0.515 0.152 0.103

transMUFAa 1.475 21.01 4.538 4.168

C18:2cis-9, trans-11 0.005 1.958 0.437 0.405

C18:2trans-10, cis-12 0.000 0.038 0.013 0.008

CLAb 0.056 2.041 0.472 0.446

C15:0 0.462 2.590 1.440 0.345

C17:0 0.301 0.777 0.434 0.101

ODDc 1.110 4.430 1.840 0.548

iso C13:0d 0.012 0.048 0.029 0.008

iso C14:0d 0.033 0.115 0.068 0.019

iso C15:0d 0.116 0.283 0.187 0.027

iso C17:0c 0.155 0.467 0.265 0.054

ISOd 0.572 1.100 0.766 0.100

ante C15:0 0.167 0.533 0.406 0.070

ante C17:0 0.288 0.520 0.357 0.063

ANTEe 0.533 1.050 0.775 0.115

BRANCHEDde 1.230 2.030 1.540 0.181

OBCFAcde 2.341 5.940 3.380 0.597

a Individual FA reported as well as all trans C14:1 and all trans C16:1 are

included in the sum of trans monounsaturated fatty acids (trans MUFA).
b Individual FA reported as well as trans-9, cis-11 C18:2 and trans-11,cis-

13þcis-9, cis-11 C18:2 are included in the sum of conjugated linoleic acids

(CLA).
c Individual FA reported as well as C5:0, C7:0, C9:0, C11:0, C13:0, C19:0,

C21:0, C23:0 are included in the sum of Odd Chain Fatty Acids (ODD).
d Individual iso FA reported as well as iso C16:0 and iso C18:0 are included in

the sum of iso branched chain fatty acids (ISO).
e Individual anteiso FA reported are included in the sum of anteiso Branched

Chain Fatty Acids (ANTE).

Table 2
Partial least squares regression results for the best individual and grouped

saturated odd and branched (iso and ante) chain fatty acids (OBCFA) using no

derivative, 1st Savitzky–Golay (SG) or 2nd SG derivative transformation nfor ATR/

FTIR spectra combined with RT, FT or RFT Raman spectra of milk fat samples

(n¼75) after multiplicative scatter correction (MSC) transformation. Best results

(bold) are based on lower RMSECVa, lower no. PCs and higher Rcv
2 compared to

ATR/FTIR only or Raman only spectra models.

Combinatorial spectroscopy models Single
spectroscopy
models

Fatty acid Rcv
2 RMSECV No.

PCs
ATR/
FTIR

Raman ATR/
FTIR

Raman

SGn T
(1C)b

Range SG T
(1C)b

Range

C15:0 0.728 0.179 4 No

Der

RFT Full 1st FT Full

C17:0 0.553 0.071 7 1st RT Full 2nd RT Full

ODD 0.688 0.312 4 2nd FT Full 1st RFT Full

iso C13:0 0.632 0.005 6 1st RFT Full No

Der

RFT Full

iso C14:0 0.377 0.015 3 1st FT Full 2nd FT 1650

iso C15:0 0.514 0.019 4 1st RFT Full No

Der

RFT Full

iso C16:0 0.373 0.034 4 1st FT Full 1st FT Full

iso C17:0 0.799 0.025 4 1st FT Full No

Der

FT Full

ISO 0.367 0.079 4 2nd FT Full 2nd FT Full

ante C13:0 0.466 0.003 4 2nd FT Full 1st FT Full

ante C15:0 0.749 0.035 7 2nd RFT 1650 2nd RFT Full

ante C17:0 0.793 0.029 6 2nd RFT Full 2nd RFT Full

ANTE 0.809 0.051 7 1st RFT Full 2nd RFT Full

BRANCHED 0.719 0.096 7 2nd RFT Full 1st RFT Full

OBCFA 0.771 0.284 2 2nd FT 1650 2nd FT Full

a Root mean square error of cross-validation (RMSECV) in g/100 g fatty acid

methyl esters (FAME).
b Raman spectra of milk fat samples acquired at room temperature (RT), after

freezing at �80 1C (FT) or combined RT and FT (RFT).
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the Raman spectra in the vicinity of 2074 cm�1 appeared as
significant (Supporting materials, Fig. SM2). However, the former
are rather noisy and are not related to any scattering signals, thus
their appearance could only be attributed to a variation shift from
other important bands (such as the CQO band in the vicinity of
1700–1780 cm�1) to noise containing regions during the multi-
plicative scatter correction (MSC) pre-processing technique [19]
(Supporting materials, Fig. SM3). Nevertheless, it was interesting
to observe that these same bands appeared as significant in both
the RT Raman and the FT Raman parts of the iso C13:0 model
(Supporting materials, Fig. SM2).
3.4. ANTE

No drastic improvement for the individual and grouped ANTE
fatty acids was evident, with the exception of a slight numerical
increase in Rcv

2 and RMSECV for ante C13:0 and ante C15:0
(Table 2, Fig. 2). Already the best ante C17:0 models based on
single Raman spectra had satisfactory performance, but no addi-
tional useful combinatorial information related to the variation of
this FA within this concentration range using the current dataset
was available. Similarly to iso C17:0, the regression coefficients
plot of the best ante C17:0 model indicated significant predictors
in the vicinity of 3060–3020 cm�1 and 3015–3005 cm�1 (Sup-
porting materials, Fig. SM4), which was in support for the
Please cite this article as: I. Stefanov, et al., Talanta (2013), http://d
assumption for saturation information presence in this part of
the Raman spectrum (Fig. 5).
3.5. Unsaturated FA

In general, the combinatorial models for the trans-mono and
trans-conjugated unsaturated FA resulted in lesser improve-
ment when compared to the saturated OBCFA gain over single
spectra models. This might be a consequence of the already
good determinations with the single Raman or ATR/FTIR spectra
models, which contain directly available isolated non-
overlapping chemical signals specific to trans-mono and
trans-conjugated unsaturated bonds [8]. Nevertheless predic-
tions of some of the minor fatty acids were improved, while for
others although no improvement in the models’ RMSECV or Rcv

2

parameters occurred, a decrease in the number of model factors
was evident (Table 3).
3.5.1. Trans MUFA

The best combinatorial trans-6þ7þ8 C18:1 FA model had no
improvement in Rcv

2 and RMSECV over individual spectra results,
but the number of principal components (PCs) used for descrip-
tion of the variation significantly decreased (4 PCs compared to
6 PCs for single Raman). The trans-6þ7þ8 C18:1 regression
coefficients were similar to previously reported bands in the
Raman spectra [8], but the new model required only 55 predictor
variables from the concatenated RamanþATR/FTIR spectra
x.doi.org/10.1016/j.talanta.2013.02.034i
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Table 3
Partial least squares regression results for the best individual and grouped trans monounsaturated (trans MUFA) and conjugated linoleic (CLA) fatty acids using no

derivative, 1st Savitzky–Golay (SG) or 2nd SG derivative transformationn for ATR/FTIR spectra combined with RT, FT or RFT Raman spectra of milk fat samples after

multiplicative scatter correction (MSC) transformation. Best results (bold) are based on lower RMSECVa, lower No PCs and higher Rcv
2 compared to ATR/FTIR only or Raman

only models.

Fatty acid n g/100 g Combinatorial spectroscopy models Single spectra models

Rcv
2 RMSECV No. PCs ATR/FTIR Raman ATR/FTIR Raman

SGn T (1C)c Range SG T (1C)c Range

C18:1 trans-4 75 Maxb 0.778 0.005 7 No Der FT Full 2nd FT Full

C18:1trans-5 75 Maxb 0.659 0.009 4 1st RFT Full No Der RFT 1650

C18:1 trans-6þ7þ8low 73 o0.50 0.855 0.031 4 1st FT Full 2nd RFT Full

C18:1 trans-6þ7þ8 75 Maxb 0.402 0.122 3 2nd FT 1650 No Der FT 1650

C18:1 trans-9 low 70 o0.42 0.902 0.020 5 2nd RFT Full 1st RFT Full

C18:1 trans-9 low 75 Maxb 0.945 0.047 5 2nd FT Full 1st FT 1650

C18:1 trans-10 low 68 o0.84 0.753 0.076 5 2nd RFT 1650 2nd FT Full

C18:1 trans-10 75 Maxb 0.946 0.543 5 1st RFT 1650 1st RFT 1650

C18:1 trans-11 low 66 o1.20 0.781 0.100 5 2nd FT Full No Der RT 1650

C18:1 trans-11 75 Maxb 0.926 0.245 1 No Der FT Full No Der RT 1650

C18:1 trans-12 low 73 o0.91 0.876 0.054 4 2nd FT 1650 2nd FT 1650

C18:1 trans-12 75 Maxb 0.814 0.094 6 No Der RT 1650 1st RFT 1650

C18:1 trans-15 75 Maxb 0.737 0.052 5 2nd FT Full 2nd FT Full

trans MUFA low 63 o4.60 0.901 0.195 5 No Der RT Full 2nd FT Full

trans MUFA mid 70 o8.10 0.962 0.213 6 1st RFT Full 2nd RFT Full

trans MUFA high 75 Maxb 0.987 0.474 7 2nd RT 1650 1st RT 1650

C18:2 cis-9, trans-11 75 Maxb 0.860 0.142 4 1st RT Full 1st RFT 1650

C18:2 trans-10, cis-12 75 Maxb 0.729 0.004 4 2nd FT Full 2nd FT Full

CLA 75 Maxb 0.942 0.098 3 2nd RT Full 1st RT Full

a Root mean square error of cross-validation (RMSECV) in g/100 g fatty acid methyl esters (FAME).
b Maximum concentration in g/100 g FAME of the corresponding fatty acid (FA) or FA group as reported in Table 1.
c Raman spectra of milk fat samples acquired at room temperature (RT), after freezing at �80 1C (FT) or combined RT and FT (RFT).
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(compared to 72 for the best Raman only, Supporting materials,
Fig. SM5).

The optimal total trans MUFA in low concentration range
(o4.6 g/100g in total fat) combinatorial model showed fine
improvement over single Raman and ATR/FTIR. Although, the
presence of conjugated linoleic acids (CLA) is known to hinder
trans MUFA determinations in low quantities with ATR/FTIR
analyses (AOCS Official Method Cd 14d-99) due to proximity of
conjugated and isolated trans unsaturated FA signals in the
vicinity of 930–990 cm�1 [17], the newly resulted interaction
with the Raman part of the spectra in the vicinity of 1670 cm�1

overcame this difficulty (Supporting materials, Fig. SM6). The
1666 cm�1 Raman scattering was previously reported as trans

MUFA specific [8]. This indicates an opportunity for routine
screening of low trans MUFA.
Please cite this article as: I. Stefanov, et al., Talanta (2013), http://d
3.6. CLA

Although the R2cv and RMSECV parameters for any individual
or grouped CLA combinatorial models remained unimproved, the
simplicity of the new models was evident by the lower number of
factors required for description of the FA variation. The best
models for the two individual trans-10, cis-12 and cis-9, trans-11
CLA isomers required four principal components (compared to
7 PCs for single Raman and 7 PCs for single ATR/FTIR) and the
total CLA group model had only three PCs (compared to 7 PCs for
single Raman and 5 PCs for single ATR/FTIR, Table 3). This
improvement in simplicity was supported by the lower number
of significant predictors: 62 predictor variables for the total CLA
group and only 21 for the cis-9, trans-11 CLA isomer. Based on the
regression coefficients plot of the latter, the explained variation
x.doi.org/10.1016/j.talanta.2013.02.034i
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emerged from the Raman spectrum in the vicinity of 1652 cm�1

and the ATR/FTIR spectrum in the vicinity of 945 cm�1, which is
consistent with previously reported bands [8].
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4. Discussion

Improvement of milk fatty acid quantification models is
currently performed by (1) extending the calibration range
(increasing in dependent variation in the response variable),
or (2) increasing the number of spectra used in the calibration
model [6], or both. Although the first approach could increase
the strength of the relationship between the predictors and the
response variable, it improves model performance by increas-
ing linearity, but does not necessarily decrease the residuals for
lower range predictions. Further, the second approach might
increase precision by minimizing perturbation from other non-
targeted constituents (such as protein, lactose, urea and water),
but it does not necessarily improve the accuracy of the predic-
tions by adding new vibrational information specific to fatty
acids. The latter cannot help with quantification models for
minor constituents such as minor fatty acids (below 1.0 g/100g
of total fat), which exhibit little or no detectable variations in
absorption/scattering signal specific to their molecular struc-
ture. Thus, to achieve actual improvement in accuracy there is a
need to (1) remove the perturbation of non-targeted milk
constituents and/or (2) add more vibrational information (pre-
dictors) specific to the minor fatty acids of interest. The former
was already implemented by extracting the milk fat and using
spectra of the milk fat only for construction of calibration
models. The latter could be achieved by analyzing the sample
of interest under different environmental conditions (varying
temperature etc.) and was already accomplished using Raman
spectroscopy [7,8]. However, if the spectral information from
one technique is not capable in providing a sufficient answer to
a specific question, often additional techniques are used for
providing this extra vibrational information, e.g. application of
more than one spectroscopy technique as a secondary confir-
mation for the identity of chemicals is an established procedure
in the pharmaceutical, forensic and many other fields [20–22].
Similarly in the food control and animal production field, if a
chemical of interest is difficult to analyze (due to similarities in
the chemical structures with other components and/or low
amounts in the matrix), but exhibits a characteristic chemical
signal with more than one spectroscopy technique, it would be
useful to utilize the information from the various spectra.
Because the Raman spectrum of milk fat is complementary to
the mid-infrared (IR) spectrum that may be obtained for the
same sample (that is, both techniques possess characteristic
signals for specific fatty acid chemical bonds, but with different
intensities and band positions), their combination for predic-
tion of individual or grouped fatty acids (FA) is compelling.
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4.1. Simplification

The current results demonstrated that spectra combination
improves determinations of selected odd and branched chain
saturated (OBCFA) and trans unsaturated FA. For example, the
best combinatorial model for the very minor (o0.50 g/100g of
total fat) iso C17:0 FA was drastically improved and had the
greatest decrease in RMSECV compared to all other FA (Fig. 2).
The increase in robustness and simplicity of the latter was
evident from the model’s regression coefficients (RC) plot,
which depicted variable combinations specific to iso C17:0
based on previously reported variables, specific for branched
chain saturated FA standards, e.g. ATR/FTIR absorption in the
vicinity of 1480–1430 cm�1 [17] and Raman scattering in the
2800–2700 cm�1 region [7] (Supporting materials, Fig. SM7).
These RC were substantially smaller compared to the RC values
of the ATR/FTIR variables in the vicinity of 1710 cm�1 and the
Raman variables in the region of 3005 cm�1, which emerged as
the most important contributors (Supporting materials, Fig.
SM7). It is possible that these two bands are correlated, as
their loadings were aligned along the axis of principal compo-
nent (PC) 4 in the two dimensional PC1–PC4 loadings plot (X-
explained: 54%, 3%; Y-explained: 13%, 7%) of the iso C17:0
model. While the 1780–1700 cm�1 band is attributed to the
CQO carbonyl absorption from the ester bond in the FA
structure [18], no known molecular vibrations in saturated FA
are assigned to the 3020–3000 cm�1 Raman region, which is
rather better known as scattering from the symmetric and
asymmetric stretching vibrations in ¼C–H ethylenic bonds of
unsaturated FA, thus its significance in the determination of iso

C17:0 was relatively unexpected [16]. Nevertheless, reports
indicate that branched chain saturated FA standards exhibit
similar Raman scattering when analyzed at FT conditions, but
no explanation regarding the origin of the occurrence is
provided [7]. The simplest unsaturated hydrocarbon ethylene
H2CQCH2 has been shown to possess Raman spectrum with
scattering signal in the vicinity of 3040 cm�1 from the asym-
metric ¼C–H stretching vibration [23] and the length of this C–
H bond in ethylene is 108.7 picometers (pm) [24]. Surprisingly,
the simplest saturated alkane methane CH4 also has a Raman
scattering signal from the C–H stretching vibration around
3020 cm�1 [23,25], and the length of the C–H bond in methane
(108.7 pm) is similar to ethylene’s [26] (Supporting materials,
Fig. SM8). However, in ethane the bond distance of the methyl
C–H increases to 109.4 pm and in isobutane it is even longer
reaching 111.3 pm [27] (Supporting materials, Fig. SM8). The
Raman spectra of both ethane and isobutene do not exhibit
such a scattering around the 3020–3000 cm�1 region at room
temperature [28,29]. It would seem that the appearance of this
band might be due to a shortened C–H chemical bond in the
methyl end of the FA chain. As the molecules are cooled down,
the aliphatic chains become more ordered by self-assembling.
The existence of an extra –CH3 group at the end of the FA chain,
could induce strain conditions under which the organization of
molecules becomes difficult and the iso branch is placed under
stress due to proximity with other FA residues. This pressure
could shorten the C–H bond and deform the electron cloud
around C–H in –CH3 from an isotropic to a highly dense
distribution resembling that of ¼C–H, where the hydrogen atom
is more closely attached to the carbon. Although shorter chemical
bonds are associated with weaker polarizability, the electron cloud
around the symmetrical vibration might be easily distorted upon
interaction with the incident photons. A secondary technique
(possibly X-ray diffraction) is required for obtaining the actual C–
H bond length in the methyl group of FA during FT conditions for
confirmation of this prediction. Nevertheless, as seen in the best iso
Please cite this article as: I. Stefanov, et al., Talanta (2013), http://d
C17:0 combinatorial model, as well as the appearance of the same
region as significant in the iso C15:0 combinatorial model (although
to a lesser extent, which could be due to lower iso C15:0 concentra-
tion (MAX¼0.30 g/100 g in total fat, Table 1) and thus limited
determination), the 3020–3000 cm�1 band is suspected to possess
information about saturation under FT conditions.

The regression coefficients of the optimal C15:0 model using
RFT Raman spectra combined with a no derivative pre-treated
ATR/FTIR spectra indicated similar bands to previous reports
(Supporting materials, Fig. SM2). One of the three significant
predictors from the ATR/FTIR part of the spectra, the band
around 1302 cm�1 related to –(CH2)n– wagging vibrations was
not previously observed in the single ATR/FTIR C15:0 models
[17]. This very weak shoulder band is known to exhibit inter-
action with the proximate 1230 cm�1 band (Supporting mate-
rials, Fig. SM9), which is a strong band assigned to the C–O
asymmetric stretching vibration in a C–O–C aliphatic ester
bond (glycerol/hydrophilic part of TAG) [18]. Still, the appear-
ance of this very weak band as a major contributor in the
combinatorial, and not in the single model, might be driven by
an interaction with the 1048 cm�1 band from the Raman
spectrum. The loadings of all three bands were positioned
along PC4 (0 angle, Y-explained: 30%, Supporting materials,
Fig. SM10), which indicated that the angle between the load-
ings is small, which in turn means that these variables were
correlated [30]. While the correlation between the 1300 cm�1

and 1230 cm�1 bands might be partially caused by proximity
covariance, the nature of the 1300 cm�1 versus 1048 cm�1

interaction is solely due covariance present from different
chemical bonds in the same molecule. Absorbance in the
vicinity of 1305–1295 cm�1 is mass sensitive for n-alkanes
and the Raman scattering in the region of 1100–1040 cm�1 is
known to be due to the –C–C–C– stretching vibrations in the
backbone of alkane residues [18]. The latter is the basis for
interaction between these two FA chain length sensitive signals
from two different spectroscopy techniques. It seems that the
combinatorial model was able to pick up this interaction
between the very weak ATR/FTIR band and the stronger Raman
band in relation to C15:0 FA variations, which slightly
improved linearity and decreased the residual error of the
C15:0 model. Weak bands, which are normally not detected
by variable selection algorithms, might emerge as significant
when combined with other bands exhibiting similar
vibrational modes.

Strong correlations between bands sensitive to similar vibra-
tional modes were also evident in other fatty acid combinatorial
models. For example, the covariance among the 976–956 cm�1

(ATR/FTIR) and the 1671–1665 cm�1 (Raman) bands in the total
trans MUFA combinatorial models were due to the CQC bond in
trans monounsaturated fatty acids. However, because these two
signals are relatively isolated and strong in the individual ATR/
FTIR and Raman spectra, this covariance seemed to result in a
more accurate determination for the low total trans MUFA model
only (Table 3, Fig. 4). Since most of the variation in relation to
major fatty acids is directly available, weaker bands are deemed
insignificant and typically removed by the variable selection
algorithm. Nevertheless, the combinatorial approach seemed to
enhance fatty acid specific signals and determinations for minor
trans FA, such as trans-4 C18:1 were also enhanced (Supporting
materials, Fig. SM11).

These results indicate that in addition to introducing extended
variation, data combination might reveal band interactions from
the two different types of spectra, which were previously not
available. Covariance occurring due to vibrational signals from the
same chemical bonds or signals from different bonds within the
same molecule is evident. In turn, a higher abundance of FA
x.doi.org/10.1016/j.talanta.2013.02.034i
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specific bands might help for the rejection of insignificant regions
polluted with noise from similar or major FA and help for
simplification of the prediction models.

Most new models result in an improved performance due to
robustness and simplicity implied by the reduced number of
model factors. The latter was especially evident in the OBCFA
combinatorial model, which required only 2 PCs (Table 2) versus
6 PCs in the best single Raman prediction model [7] accompanied
by fewer predictors (Supporting materials, Fig. SM12), as well as
in the trans-11 C18:1 (only 1 PC) and total CLA (only 3 PCs)
combinatorial models (Table 2). The lower number of PCs, which
was accompanied by the lower amount of predictors necessary
for description of the FA variation, is an important step towards a
more robust identification of FA specific variables. If only a
handful of the most important wavenumbers from different
spectroscopy techniques are selected, construction of models
based on multiple linear regression (MLR) might be possible.
MLR is considered the most robust regression method for use in
industrial at-line and on-line spectroscopy applications without
the need for variable selection algorithms.

4.2. Variable selection strategies

A typical vibrational spectroscopy based chemometrical model
does not always use the full range spectrum for the predictions,
but often uses only a limited number of frequencies, which
correspond (directly or indirectly) to the chemical structure of
the predicted component. The selection procedures for these
variables can differ, but the most commonly applied methodology
involves the removal of the noisy/non-contributing variables (a
backward elimination) by a selection algorithm, retaining only
the important predictors (Scheme 2). The latter is typically
performed in combination with the regression algorithm of choice
and the regression method proven most robust in low observa-
tion, high predictor volume datasets, such as in spectroscopy
based applications, is PLS regression.

The current results were highly dependent on the variable
selection strategy. The backward variable elimination strategy
starting from the fully concatenated ATR/FTIR and Raman spectra
resulted in regression models with best overall performance. As
previously indicated, the improvement in the performance of
models constructed using this strategy was a result of new
variable combinations from each Raman and ATR/FTIR spectrum.
The forward variable input strategy, which only used variables
selected in the single Raman models concatenated to full or
selected ATR/FTIR regions, resulted in models with numerically
better statistical parameters only for C17:0 and trans-5 C18:1
(Tables 2 and 3), while for all other FA a significant deterioration
in Rcv

2 and RMSECV performance was evident. In addition, most
models using the forward strategy required more PCs, which
denoted higher complexity. In contrast the backward variable
selection strategy resulted in higher number of PCs only for the
trans-4 C18:1 model, while for all others the number of PCs either
remained the same or was drastically reduced compared to single
spectra models (Table 3).

Although this higher model complexity in the forward variable
selection approach might be driven by the incompatibility
between the ATR/FTIR and the pre-selected Raman variables for
describing the FA variation, no deterioration in the model’s
performance should have occurred and the jackknifing variable
selection algorithm in combination with PLS should have been
able to extract the original set of Raman only predictors for best
performance. Nevertheless, it is possible that the selection algo-
rithm was not capable of extracting this information, because it
was overwhelmed by the high covariance between neighboring
ATR/FTIR variables. Thus to achieve further ‘‘building’’ upon the
Please cite this article as: I. Stefanov, et al., Talanta (2013), http://d
best Raman only models, superior variable selection and/or
regression methods should be investigated.

The advantage of the forward variable selection strategy is that
it assumed that the best Raman only variables would always be
the optimal solution, upon which new ATR/FTIR variables are
added: similar to giving a 500 m head start in a 2 km track race.
The drawback of this approach is that it undermines the combi-
natorial power of other variables, which might have emerged as
significant in the original selection procedure. As it was subse-
quently discovered, it is these new variable combinations, which
could give way to better sensitivity for description of the FA
variation by helping in the detection of weak, but important
vibrational modes.

4.3. Disadvantages of combinatorial spectroscopy

Combined Raman–ATR/FTIR spectra would allow the extrac-
tion of more chemical information regarding the sample of
interest, but would impose the difficulties and the cost of having
two separate spectroscopy systems. Although spectroscopy tech-
niques are very fast (matter of seconds to few minutes, depending
on the quality of spectra required), the new approach would also
double the spectra acquisition time. Nevertheless, the industry
has recognized this advantage and already there are instruments
which combine two analytical techniques in a single system, but
with separated compartments for sample analysis, e.g. Brüker
Vertex 70 FTIR coupled to a RAM II Fourier transform Raman
module (Bruker Analytical, Madison, WI). In addition, due to the
significant advantages of possessing both Raman and IR spectral
information, the development of combination instruments which
generate spectra from the same sample portion (without moving
the sample) with significant decrease in acquisition time are
already underway, e.g. Horiba LabRAM IR2 (HORIBA GmbH,
Bensheim, Germany).

5. Conclusion

The new spectra combinatorial approach allows for addition of
new fatty acid specific information to the regression models and
allows for selection of weak fatty acid specific bands. This is
achieved on the basis of ‘‘finding’’ covariance with other bands
from the second type of spectra based on: (1) signal from the
same bond, and (2) different bonds but within same molecule. In
addition, the importance of variable selection algorithms in the
construction and performance of chemometrics models is empha-
sized and a drawback of the jackknifing variable elimination
algorithm in combination with PLS regression is exposed. For
further optimization, new variable selection and regression
opportunities, such as machine learning techniques should be
explored.

A combination of spectra from two different techniques will
provide fast solutions in various spectroscopy-based tasks, but
the cost-benefit analysis should be seriously considered prior to
application. From a speed point of view, obtaining spectra of a
sample via a second vibrational spectroscopy technique would
not disturb the routineness of the analysis. Thus this novel spectra
combination approach should prove useful for a diverse range of
applications in chemometrics, other than the currently demon-
strated determination of milk fatty acids.
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Analyses on Raman spectroscopy as reported are obtained
in collaboration with researchers of the Walloon Agricultural
Research Centre, Valorisation of Agricultural Products Depart-
ment (Head: Dr. Pierre Dardenne) within the framework of the
collaborative agreement between LANUPRO and the Valorization
of Agricultural Products Department (A08-TT-0384).
Appendix A. Supporting information

Supplementary data associated with this article can be found
in the online version at http://dx.doi.org/10.1016/j.talanta.2013.
02.034.
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