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Characterization of soft winter wheat diseases 
using near-infrared spectroscopy in field trials
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Our project aims at developing applications for a future 
constellation of satellites

Future constellation of hyperspectral 
micro-satellites dedicated to 

agricultural monitoring

SPace for AGriculture with HYperspectral Teledetection & Innovation

Development of agricultural 
applications based on field trials and a 

portable spectrometer
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Agricultural monitoring allows combining economical prosperity 
with environmental sustainaibility in the context of climate change

mitigation

adaptation

Climate & biodiversity crisisAgricultural systems

Early detection and remediation

Rational use of inputs Adapted varieties

Yield  optimization

Agricultural monitoring – Smart farming – Precision agriculture
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One of the selected applications focuses on the detection of 
biotic stress, in particular yellow rust, on soft winter wheat

Wheat yellow rust 
Pucciniastriiformis f.sp. tritici

Symptoms
• Yellow stripes on leaves
• Early disease-induced senescence
• Decreased yield (up to 50 %)
• Reduced grain quality

• Early in the growth season
• Fresh and humid conditions
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The spectrum of wheat evolves differently during 
the growing season if contaminated by yellow rust

Senescence (%)YR (1-9)BBCH codeDate

1/560 Start flowering2023-06-06

20/70-75 Medium milk2023-06-27

40/80-80 Start ripening2023-07-03

Fungicide
treatment

yes
no

Fungicide treated vs. no treatment at end of flowering
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Different methods have been used to detect 
or quantify YR on wheat in the field

ReferenceResultAcquisitionMethod

Zhang et al. 2012 Significant correlation at all 
growth stages (p < 0.05)

Canopy spectral 
reflectance

Physiological Reflectance Index
PhRI = (R550 − R531) / (R550 + R531) 

Huang et al., 2014R2 = 0.86, accuracy against 
other diseases = 0.92

Leaf spectral 
reflectance

Yellow Rust Index
YRI = (R550 − R531) / (R550 + R531) + 0.5 R736

Whetton et al., 2018Regression of YR pixel ratio
R2 = 0.72, RPD = 1.6 

Canopy ground-based 
hyperspectral imaging PLSR

Bohnenkamp et al. 2019Regression of YR pixel ratio
R² = 0.63

Canopy ground-based 
hyperspectral imaging Feature selection + SVMR
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We have tested multivariate modelling and 
spectral index (SI) approaches

1. Calculate (non-linear) correlation between YR and existing SIs

2. Discriminate YR infection class by PLS-DA: class 1 (no visible 

symptoms) vs classes 2-9 (sparse to generalized symptoms)

3. Develop an optimal SI by genetic algorithm (GA)
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Genetic algorithm mimics the process of 
natural evolution to select a set of variables
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The ROC curve is used to evaluate discrimination 
performance and find the discrimination threshold

9By cmglee, MartinThoma - Roc-draft-xkcd-style.svg, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=109730045

AUC: Area Under the ROC CurveOptimal 
discrimination 

threshold
GA maximizes the fitness function: 

ଵ ଶ ଷ

AccuracyAUC

Excellent90-100

Good80-90

Fair70-80

Poor60-70

Very poor50-60



Two trials have been used for calibration 
and two other ones for validation

Stress (#Dates)#Obs (YR)#Plot 
/ Var, Date#DatesFungicideVarietiesYearName

Senesc (4), YR (4)512 (256)48No162021cal_1
Senesc (8), YR (1)544 (64)49No162022cal_2

Senesc (5), BR, PM, 
Septo, TakeA, YR (4)820 (164)210Yes/No412023val_1

Senesc (4), YR (1)100 (20)205Variable12023val_2

• In total 3 variety trials and 1 fungicide trial
• Different years for calibration and validation
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Field plots were measured from top using an 
ASD FieldSpec spectrometer and a pistol grip
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Many existing SIs show significant correlation with 
YR and senescence (S) on different dates and trials

12p-value: *** < 0.001 < ** < 0.01 < * <0.05 < n. s



The NDVI shows a globally negative trend 
with observed YR severity for all trials
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PLS-DA predicted score shows a strong relationship 
with YR severity on calibration and validation trials
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Loadings (#LV = 3)Preprocessing: SNV(SavGol(7, 2, 1)) 



The GA-obtained index shows a globally positive 
trend with observed YR severity

!! Very different 
threshold for 
each trial !!

Optimal index = (R734 − R696) / (R734 + R696) - 0.893 R1927 15



The AUC is better for calibrated models than for 
indices, but performance is always limited on val_1
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GA indexGA indexSource

0.730.76cal_1

0.860.88cal_2

0.560.58val_1

0.860.75val_2

YRIVARISIPhRIPMI_2NLRHINDVILRDSI_2LRDSI_1HI_1HBIFCIDSSI_1CAIAISource
0.490.690.710.480.410.620.710.640.640.550.450.600.650.520.53cal_1
0.460.720.680.510.510.810.680.590.570.600.260.750.640.570.62cal_2
0.470.560.610.550.460.520.580.560.570.540.500.520.560.500.52val_1
0.560.890.640.860.190.530.580.970.940.420.440.640.580.780.36val_2



Conclusions

• Most existing SIs show a relationship with YR

• Both PLS-DA and GA optimized indice can predict YR but, in the case 
of val_1, only for stronger infection levels  

• There is a need for more data both for calibration and for validation 
to assess more thorougly the predictive ability. 
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Perspectives

• Need for more data. Will be available soon data from:
• New measurement campaign on field trials
• Drone flight on trial
• EnMap satellite image on farm plot

• Test more complex index formula with GA (up to 5 wavelengths)
• When more data will be available, test prediction by growth stage
• Add uncertainty to predictions

• For PLS-DA, use resampling methods (bootstrap, jacknife, …)
• For GA, also consider that different runs could give slightly different models 

du to random initialization. 
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Do not miss it !!
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