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Abstract
The aim of the present study was to compare different spectroscopic techniques using the example of adulteration of pumpkin 
seed oil with rapeseed oil in combination with a multivariate regression method. A total of 124 pure seed oils and 96 adulter-
ated samples (adulteration levels from 0.5 to 90.0% w/w) were analyzed using mid infrared, Raman, and 1H-nuclear magnetic 
resonance spectroscopy. To build quantification models, partial least squares regression (PLS-R) was used. The regression 
performance parameters, latent variables, and the detection limits (in terms of root mean square error of PLS prediction) 
calculated when applying the different spectroscopic approaches were compared. For the studied example (pumpkin seed oil 
adulterated with refined rapeseed oil), the lowest detection limit (3.4% w/w) was obtained for 1H-nuclear magnetic resonance 
spectroscopy. For the mid infrared and Raman spectroscopy, detection limits of 4.8% w/w and 9.2% w/w, respectively, were 
obtained, which might be used as screening methods.
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Introduction

The Food Fraud Network’s report, published by the Euro-
pean (EU) Commission, annually indicates the most fre-
quently listed product categories in the Administrative 
Assistance and Cooperation (AAC) system (European 
Commission 2023). This system collects requests from EU 
member states to share information about non-compliances 
and potential deliberate violations of EU legislation in order 
to tackle food fraud. In 2022, numerous requests were attrib-
uted to the product category “fats and oils” (5th place), with 
the highest number of non-compliance notifications due to 

“mislabeling” (European Commission 2023), which could 
be an indication of fraudulent practices.

Cold-pressed pumpkin seed oil is a variety of oil, which 
is highly susceptible to adulteration with other edible oils. 
Compared to other seed oils (such as refined rapeseed oil), 
this is a high-priced oil due to the costly cultivation of 
the crop, the manual harvesting of the seeds, the extrac-
tion of the oil (Wenzl et al. 2002), and nutritional bene-
fits (Šamec et al. 2022). In contrast, refined rapeseed oil 
is produced in a large-scale industrial process (including 
mechanical harvesting of the seeds), which is associated 
with a high oil yield, making it an inexpensive product. 
Furthermore, pumpkin seed oil has specific organoleptic 
properties (strong inherent taste as well as odor and a dark 
green color), which may complicate identification of neutral 
edible oils as adulterants. For instance, due to the refine-
ment process, the color of a refined rapeseed oil varies from 
saturated light yellow to light yellow and the taste is almost 
neutral. Thus, the color is easily concealed when mixed 
with other edible oils. Since such adulterations can hardly 
be determined through organoleptic investigation, robust, 
fast, and reliable analytical methods are required for the 
detection and prevention of instances of food fraud (Regula-
tion (EU) 2017/625 2017).

 *	 Susanne Esslinger 
	 susanne.esslinger@bfr.bund.de

1	 German Federal Institute for Risk Assessment, 
Max‑Dohrn‑Str. 8‑10, 10589 Berlin, Germany

2	 University of Halle-Wittenberg, Kurt‑Mothes‑Str. 2, 
06120 Halle (Saale), Germany

3	 Quality and Authentication of Products Unit (QAP Unit), 
Knowledge and Valorization of Agricultural Products 
Department, Walloon Agricultural Research Centre, 
Chaussée de Namur, 24, 5030 Gembloux, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s12161-023-02568-4&domain=pdf


	 Food Analytical Methods

With respect to the detection of adulteration in the edible 
oil domain, several chromatographic approaches are well 
established, such as gas chromatography (GC) using a flame 
ionization detector (FID) (Official Method 2009/7th) or 
high-performance liquid chromatography (HPLC) in com-
bination with evaporative light scattering (HPLC-ELSD) 
detector. These techniques are applied in particular to char-
acterize the triacylglycerol and the fatty acid profiles (Salghi 
et al. 2014). If different types of olive oils cannot be distin-
guished on the basis of their fatty acid and triacylglyceride 
profile, the content of minor components (e.g., sterols) as 
identifying features can be determined by coupling HPLC 
and GC (HPLC-GC) (Grob et al. 1990). Such approaches are 
usually the basis of targeted methods, i.e., they are specific 
to certain molecules or profiles. One advantage of these tar-
geted methods involves the ability to reliably identify and 
calculate low limits of detection (LOD). For instance, Wenzl 
et al. (2002) developed a method to discover adulteration of 
pumpkin seed oil using GC-FID, based on the quantifica-
tion of the β-sitosterol content in pumpkin seed oil (Wenzl 
et al. 2002). The authors determined a LOD of 3.3 mg/L 
and showed that the addition of 1% by weight of corn oil to 
genuine pumpkin seed oil increased the β-sitosterol content 
by about 35%. However, a major disadvantage is that most 
of these chromatography-based techniques involve time-con-
suming sample preparation, including steps such as acyla-
tion, saponification, and various derivatizations. Therefore, 
rapid measurement and evaluation of the sample is not pos-
sible, which hinders detecting food fraud in an early stage. In 
addition, hazardous substances such as n-hexane, methanol, 
or different ethers are required during these sample prepa-
rations, which are hepatotoxic or even toxic to the central 
nervous system and, consequently, require experienced 
and trained personnel. Moreover, the analytical approaches 
described focus solely on the investigation of targeted, i.e., 
known substances or compositions (based for instance on 
the fatty acid profile), whereas unknown mixtures, whose 
presence or absence may provide more specific information, 
might be overlooked.

To circumvent these drawbacks, non-targeted analysis has 
been used more frequently in recent years to authenticate 
food products. This analytical approach uses, depending on 
the analytical method used, the entire spectrum/chromato-
gram of a specific food matrix in combination with chemo-
metric evaluation for a comprehensive sample characteriza-
tion. Accordingly, in order to capture the so-called chemical 
fingerprint and to avoid elimination of typical compounds 
of a sample, non-selective sample preparation is required 
(Esslinger et al. 2014; McGrath et al. 2018). Therefore, in 
contrast to targeted chromatographic methods, extensive 
sample preparation procedures such as esterification, trans-
esterification, or fat extraction are not necessary (Castejón 
et al. 2014). In addition to being more time efficient, this 

procedure often provides the advantage of a reduced use of 
hazardous chemicals.

Thus, several studies are available focusing on non-tar-
geted screening tools using mid infrared (MIR) (Fernández 
Pierna et al. 2016; Javidnia et al. 2013; McDowell et al. 
2018), Raman (Berghian-Grosan and Magdas 2020, 2021; 
Jiménez-Carvelo et al. 2017; McDowell et al. 2018), near 
infrared (NIR) (Baeten et al. 2014), and nuclear magnetic 
resonance (NMR) (Alonso-Salces et al. 2022; McDowell 
et al. 2019) spectroscopy in combination with multivariate 
data analysis.

In recent years, spectroscopy-based approaches have been 
employed to develop multivariate regression models, such as 
partial least squares-regression (PLS-R) analysis or orthogo-
nal projection on latent structures (OPLS) regression, which 
can be applied to detect and quantify specific adulterants in 
edible oil (Alonso-Salces et al. 2022; Balbino et al. 2022; 
Haughey et al. 2015; Jiménez-Carvelo et al. 2017; McDow-
ell et al. 2019; McDowell et al. 2018; Pfister et al. 2018; 
Rohman et al. 2014). For this purpose, the regression models 
are trained with “adulterated” samples containing known 
concentrations of different adulterants.

Rohman et al. (2014) were able to detect adulterations of 
canola oil in extra virgin olive oil at concentrations of 1% 
v/v using MIR spectroscopy and a PLS-R analysis (Rohman 
et al. 2014). In contrast, Christopoulou et al. (2004) were 
able to detect only 5% of canola oil in olive oil using com-
monly applied targeted, chromatographic methods in com-
bination with a considerably more time-consuming sample 
preparation (Christopoulou et al. 2004). In another study 
using near-infrared spectroscopy (NIR), colorimetry, and 
GC-MS, in combination with OPLS regression, Balbino 
et al. (2022) investigated the adulteration of pumpkin seed 
oil with refined sunflower oil (Balbino et al. 2022). The 
root mean square error of estimation (RMSEE) and of cross 
validation (RMSECV) values obtained ranged from 2.298 
to 6.668 based on different sterol contents, but the estimated 
LODs were not calculated. The detection of mineral oil in 
sunflower oil was studied by Pfister et al. (2018) using NIR 
and MIR spectroscopy. The LOD of 0.12% w/w for NIR and 
0.16% w/w for MIR were determined based on the calcula-
tion of three times the standard deviation of the predicted 
mineral oil content of the non-spiked samples (Haughey 
et al. 2015; Pfister et al. 2018). This example illustrates that 
very low LOD can be obtained using spectroscopy-based 
and regression models.

The adulteration of cold-pressed rapeseed oil with 
refined sunflower and rapeseed oils using MIR and Raman 
spectroscopy in combination with multivariate regres-
sion analysis (PLS-R) was described by McDowell et al. 
(2018) (McDowell et al. 2018). The authors obtained mini-
mum detection levels (based on 2 × RMSE of prediction 
(RMSEP)) of 15% (Raman) and 9% (MIR) for adulteration 
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with sunflower oil. In a further study, McDowell et al. 
(2019) compared PLS-R results from low and high-field 
1H-NMR spectroscopy for the detection of adulterated 
cold-pressed rapeseed oil with other refined edible oils 
(McDowell et al. 2019). Based on PLS-R results, mini-
mum detection levels (MDLs) for the adulteration with 
refined sunflower oil of 8% (400 MHz low field) and 12% 
(60 MHz) were determined. As a result, the adulteration of 
cold-pressed rapeseed oil with refined sunflower oil indi-
cated that 1H-NMR spectroscopy (400 MHz) yielded the 
lowest minimum detection level.

Alonso-Salces et al. (2022) determined RMSEP values 
between 0.32 and 3.4 (% vegetable oil) for adulteration of 
olive oil with different oil varieties based on 1H-NMR spec-
troscopy (500 MHz) and statistical data analysis (Alonso-
Salces et al. 2022). These publications highlight strong dif-
ferences, not only regarding the approach to data evaluation, 
such as model development and optimization, but also in the 
assessment of the developed models.

Therefore, the aim of the presented study was to evaluate 
and compare the potential of three spectroscopic methods 
(MIR, Raman, and 1H-NMR spectroscopy) as screening 
tools using the results of multivariate, quantitative regres-
sion analysis to investigate the adulteration of cold-pressed 
pumpkin seed oil with refined rapeseed oil.

Materials and Methods

Sample Collection and Preparation

For this study, 44 rapeseed and 80 pumpkin seed oil samples, 
purchased from the German retail market from 2017 to 2019, 
were randomly analyzed within each seed edible oil group. 
Variability among each seed oil group was covered as best 
as possible by purchasing oils from different manufacturers, 
batch numbers, production processes, etc. (Table S1 in the 
Supplementary material).

The following procedure describes the preparation/selec-
tion of the different sample types:

(a)	 Pooling of pumpkin seed oil samples

In order to cover the highest variability of the pumpkin 
seed oil class in a sample, the 80 investigated pumpkin seed 
oil samples were randomly divided into four groups of 20 
seed oil samples each, resulting in four pool samples. For 
each pool sample, 3 ± 0.02 g of the respective pumpkin seed 
oil samples was weighed into a 100 mL amber DURAN® 
bottle (Schott AG, Mainz, Germany).

(b)	 Rapeseed oil samples as adulterants

To identify a representative subset of the rapeseed oil 
class for the adulteration of the pooled pumpkin seed oil 
samples, principal component analysis (PCA) of the MIR 
data of the 44 individual rapeseed oil samples was per-
formed. To ensure high variability within the adulterants 
(rapeseed oil group), four rapeseed oil samples were selected 
as adulterants based on the first two principal components 
(furthest apart from each other in the PCA scores plot) 
(results not shown).

(c)	 Adulterated samples

Each pumpkin seed oil pool sample (pool 1-pool 4) was 
spiked with each rapeseed oil sample (rapeseed oil 1-4), 
respectively. Pool samples 1 and 2 were adulterated at 19 
different concentrations ranging from 0.5 to 90% w/w, and 
pool samples 3 and 4 were adulterated at five different con-
centrations ranging from 1 to 10% w/w under gravimetric 
control (Genius ME254S, Sartorius AG, Göttingen, Ger-
many) (Table S2/S3 in the Supplementary material). The 
samples were homogenized for 3 min with a Vortex Mixer 
(Grant Instruments, Cambridge, UK).

The aliquots of the pure rapeseed and pumpkin seed oil 
samples and pool samples as well as the 96 different adul-
terated oil samples were filled in 1.2 mL cryogenic tubes 
(neoLab Migge GmbH, Heidelberg, Germany) and were 
finally stored under completely dark conditions at −18 °C 
excluding any headspace volume in order to better preserve 
the oil samples from oxidation.

Prior to spectroscopic analysis, the samples were tem-
pered to 21 °C and homogenized with an overhead shaker 
(Reax 2, Heidolph Instruments, Schwabach, Germany) for 
30 s at 40 rounds per minute.

MIR Spectroscopy

The mid infrared spectra were recorded on a Vertex 70v Fou-
rier transform spectrometer (Bruker Corporation, Ettlingen, 
Germany), which was equipped with the standard air-cooled 
source, a single attenuated total reflectance (ATR) diamond 
crystal, a wideband IR beamsplitter, and a room tempera-
ture deuterated lanthanum α-alanine-doped triglycine sulfate 
(DLaTGS) detector. For each measurement, 1 μL of sample 
was transferred onto the crystal surface. Spectra for each 
sample were recorded in triplicate at room temperature in the 
absorbance mode from 3996 to 550 cm−1 with a spectral res-
olution of 4 cm−1 (data spacing of 1.928 cm−1, Happ-Gen-
zel apodization) by accumulating 32 scans. A background 
spectrum (laboratory air) was recorded immediately before 
each sample measurement and inspected visually in order to 
exclude any signals from solvent (from cleaning) or sample 
residues. The performance (spectral resolution, signal-to-
noise-ratio, and wavenumber accuracy) of the spectrometer 
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was inspected every 2 months using a polystyrene standard. 
Spectra visualization was performed with the OPUS 6.5 
software package (Bruker, Waltham, USA). The triplicate 
spectra were averaged and the mean spectrum was used for 
chemometric analysis.

Raman Spectroscopy

The Raman spectra were acquired on a Vertex 70v Fou-
rier transform spectrometer equipped with RAM II module 
(Bruker Optics, Ettlingen, Germany) with a spectral range 
of 4000–50 cm−1 and a spectral resolution of 4 cm−1 by col-
lecting 128 scans. The Raman module was equipped with 
a Nd:YAG laser source (yttrium aluminum garnet crystal 
doped with triply ionized neodymium) (1064 nm), a CaF2 
beamsplitter, and a liquid nitrogen cooled germanium diode 
detector. Each sample was placed in a glass cuvette (10 mm) 
and then measured in duplicate at room temperature. The 
performance of the spectrometer was checked every month 
using a polystyrene and a naphthalene standard. Visualiza-
tion of spectra was performed using the OPUS 6.5 software 
package (Bruker Optics, Ettlingen, Germany). The duplicate 
spectra were averaged and the mean spectrum was used for 
chemometric analysis.

1H‑NMR Spectroscopy

All chemicals used for the 1H-NMR analysis are presented 
in Table S4 in the Supplementary material. The meas-
urements were performed with a 400 MHz spectrometer 
(Bruker BioSpin GmbH, Rheinstetten, Germany) applying 
the instrument specifications in Table S5 in the Supplemen-
tary material.

For data collection, 140 ± 2 mg of oil was weighed 
into a sample tube (Safe-Lock tube, 2 mL, Eppendorf AG, 
Hamburg, Germany). Using a positive displacement pipette 
(Microman M1000, 100 μL, Gilson Inc., Middleton, USA), 
700 μL of deuterated chloroform (CDCl3, with 0.03% tetra-
methylsilane (TMS) as internal standard) was added to the 
same 2 mL sample tube. The weight of the sample and 
the added CDCl3 were recorded on an analytical balance 
(Genius ME254S, Sartorius AG, Göttingen, Germany). The 
weight of the CDCl3 was converted to volume (ρ = 1.5 g/
cm3). The total volume of each diluted oil sample was 700 ± 
20 μL. The sample tube was sealed and the solution homog-
enized for 10 s on a Vortex Mixer (Grant Instruments, Cam-
bridge, UK). From this homogenized solution, 600 μL was 
transferred to a 5 mm NMR tube (507-PP-7, Wilmad-Lab-
Glass, Sigma Aldrich, St. Louis, USA) using a piston-stroke 
pipette. During the measurement, the pumpkin seed oil and 
adulterated samples were positioned in the autosampler 
holder (BACS-120, Bruker BioSpin GmbH, Rheinstetten, 

Germany) under dark conditions at room temperature to 
avoid oxidation processes.

All 1H-NMR measurements were performed without 
rotation in an automated mode. After sample transfer to the 
magnet by the autosampler and an equilibration time of 5 
min for the temperature, the following optimization steps 
of the NMR parameters (Godelmann et al. 2013) for each 
sample were carried out: (i) locking, (ii) automatic tuning 
and matching, (iii) shimming, and (iv) pulse calibration. 
Sample acquisition and processing were performed within 
a single experiment. The instrument settings are presented 
in Table S6 in the Supplementary material. The collected 
free induction decay (FID) was automatically processed in 
TopSpin (Bruker BioSpin GmbH, Rheinstetten, Germany), 
which included the multiplication with an exponential line 
broadening (LB) function of 0.3 Hz, Fourier transformation, 
phase and baseline (polynomial) correction. The chemical 
shift axis of the spectra was referenced to the signal of TMS 
at δ 0.00 ppm. The obtained spectra were used for multivari-
ate data analysis.

Quality Control Sample

A refined rapeseed oil purchased from the local market 
(Germany) was used as quality control (QC) sample for all 
analysis. The QC sample was analyzed on each measurement 
day using the three selected spectroscopy approaches (at the 
beginning, the middle, and the end of each batch) and was 
filled and stored in the same way as described in “Sample 
Collection and Preparation”.

In addition to the QC sample, two NMR tubes (5 mm) 
containing methanol-d4 and sucrose standard solution 
(Bruker GmbH, Rheinstetten, Germany) were analyzed 
for defined parameters (absolute temperature of methanol-
d4; water suppression: length of 90 °C pulse, half-width of 
TMS signal, and signal-to-noise ratio) before starting the 
NMR measurements each working day and the correspond-
ing assessment limits are listed in Table S7 in the Supple-
mentary material. Whenever the half-width of the standard 
signal of TMS (~ 0.5 Hz, maximum 0.7 Hz at LB = 0) was 
>0.5 Hz, the measurements were repeated.

Multivariate Data Analysis

The pre-processing (only bucketing) of 1H-NMR spec-
tra was performed using Mnova version 12.0 (Mestre-
lab Research, S.L., USA). Multivariate data analysis was 
carried out using PLS toolbox version 7.0.3 (Eigenvector 
Research, Wenatchee, WA, USA) together with Matlab ver-
sion 7.11.0584 R2010b (The MathWorks Inc., Natick, MA, 
USA).
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Data Reduction and Optimal Pre‑processing

Regions of the averaged spectra of MIR measurements that 
did not contain relevant spectral information were excluded 
(4000–3040 cm−1 and 1625–1490 cm−1 baseline area, 
2790–1790 cm−1 absorption of diamond crystal). After this 
reduction process, each MIR spectrum consisted of 678 data 
points. The same procedure was performed for the Raman 
spectra, where the regions 4000–3100 cm−1, 2600–1800 
cm−1, and 600–50 cm−1 were not included in the data analy-
sis, resulting in 3111 data points per spectrum.

The generated Fourier transformed, phase- and baseline-
corrected 1H-NMR spectra were further processed. Bucket-
ing was performed within 0.50–10.02 ppm using a bucket 
width of 0.04 ppm. The regions of the residues of the undeu-
terated chloroform signal (7.22–7.34 ppm) and without rele-
vant information (9.02–10.02 ppm) were eliminated, leaving 
203 buckets for multivariate statistical analysis.

For each spectroscopic method, PLS-R models were 
built, and the optimal pre-processing was identified based 
on the following parameters: the root mean square error of 
calibration (RMSEC), cross validation (RMSECV), and 
prediction (RMSEP) for external validation, determina-
tion coefficient (R2) of calibration, R2 of cross validation, 
R2 of prediction as well as the number of latent variables 
(LV). To select the optimal number of LV, the values for 
RMSEC and RMESCV were plotted against the number 
of LVs and selecting the first minimum. Based on these 
parameters, different pre-processing steps and combinations 
(Table S8–S10 in the Supplementary material) were tested 
for each method, and thus, the optimal approach determined 
was applied: (i) MIR spectroscopy - standard normal vari-
ate (SNV), first Savitzky-Golay derivative (filter width 15; 
polynomial 2), Savitzky-Golay smoothing and mean center, 
(ii) Raman spectroscopy - SNV, first Savitzky-Golay deriva-
tive (filter width 15; polynomial 2) and mean center, (iii) 
1H-NMR spectroscopy - normalization (α-signals of glycerol 
3.9–4.56 ppm) (Fauhl-Hassek et al. 2000) and Pareto scaling 
(Table S11 in the Supplementary material).

Explorative Data Analysis

Principal component analysis (PCA) was performed to 
reduce dimensionality by calculating principal components 
(PCs) (Wold et al. 1987) and to visualize the possible group-
ing of pure and adulterated samples, applying the singular 
value decomposition (SVD) algorithm. For the detection 
of potential outliers, Student’s t distribution, Hotelling’s T2 
probability distribution in combination with the Q-statistics, 
was used (Hotelling 1992; Joe Qin 2003).

Model Building, Optimization, and Validation Using PLS

Detection of adulterants was performed using PLS-R (Eriks-
son et al. 2006). This involves calculating various statisti-
cal parameters such as RMSEs and regression coefficients, 
which are used to assess the quality of the model (Medina 
et al. 2019; Riedl et al. 2015; Uncu and Ozen 2015). For 
this study, the RMSEC, RMSECV, and RMSEP as repre-
sentation of the spectral differences between the predictions 
of calibration/validation steps (Liu et al. 2017; Riedl et al. 
2015) as well as the determination coefficient (R2) (Uncu 
and Ozen 2015) were used. Furthermore, the RMSEP of the 
system challenge was applied to estimate minimum detection 
level as shown by Downey and Kelly (Downey and Kelly 
2004).

To perform a comparison of PLS-R model results, the 
following procedure was selected (Fig. 1) in accordance to 
recommendations of Riedl et al. (2015) (Riedl et al. 2015). 
The whole data set (pure pumpkin seed oil samples; rape-
seed oil samples - except the four rapeseed oil samples used 
for adulteration; pool 1 and pool 3 samples, adulterated 
with rapeseed oil samples 3 and 4) was divided into train-
ing (66%) and test set (34%) using the Kennard-Stone (KS) 
algorithm (Kennard and Stone 1969) to avoid the bias that 
results from manual data splitting. The training set was used 
to build and optimize the PLS-R model. An internal cross 
validation was applied with ten data splits on the training set 
using the venetian blind algorithm (Ballabio and Consonni 
2013). The test set was used for external validation to vali-
date the PLS-R model.  

Finally, the data of pool 2 and pool 4 adulterated with 
rapeseed oil samples 1 and 2 were included in the optimized 
model as independent extra test sets (so called system chal-
lenge according to Riedl et al. 2015) for prediction.

Results and Discussion

Visualization and Explorative Data Analysis

To identify differences in the composition of the two types 
of seed oil varieties, the respective spectral characteristics 
of the oil samples for each method were firstly described 
and an exploratory data analysis was performed. A detailed 
explanation of the respective fatty acid composition of the 
two seed oil varieties has already been described by sev-
eral research groups (Baeten et al. 1998; Baeten et al. 1996; 
Berghian-Grosan and Magdas 2020; Castejón et al. 2014; 
Guillén and Cabo 1999, 2000) and therefore was not the 
focus of this study.
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MIR Spectroscopy

Figure 2a illustrates the superimposed, raw MIR (after Fou-
rier transformation) spectra of ten cold-pressed pumpkin 
seed oil samples (m = 3, gray lines) and ten refined rape-
seed oil samples (m = 3, black lines). The highlighted areas 
(Fig. 2a, regions 1 and 2) represent wavenumber regions 
that exhibit the most noticeable differences in absorbance 
between the seed oil varieties. The most prominent differ-
ence is that the spectra of the pumpkin seed oil samples 
exhibit higher absorbances in the range between 1050 and 
880 cm−1 than the rapeseed oil samples. This area is asso-
ciated with the content of saturated fatty acids (Sherazi 
et al. 2009). Pumpkin seed oil generally contains 16-19% 
and rapeseed oil 5-10% saturated fatty acids (Potočnik et al. 
2016; Stevenson et al. 2007), which is in good agreement 
with the superimposed spectra.  

To visualize and identify differences and similarities in 
the data set, a PCA was performed using the pure oil sample 
set and the training set. Two main groupings can be recog-
nized in Fig. 2b, which are described in particular along 
PC1 (65% explained variance)—one group builds the data 
points of the pure rapeseed oil samples (black diamonds) 
in quadrants 3 and 4. The other cluster consists of the data 
points of pure pumpkin seed oil samples (gray squares) and 
adulterated samples (green and yellow triangles), with no 
clear separation between these to sample sets. According to 
the loading plot (Fig. 2c), the absorbance differences of the 
two seed oil varieties along PC1 are described by the range 

of 1050–880 cm−1, which seems to correlate with the infor-
mation from the line plot and thus because of the different 
proportion of saturated fatty acids in seed varieties. Other 
areas that showed differences in the two oil types in the load-
ing plot of PC1, but barely in the visualization of the spectral 
data, were the bands around 2924 cm−1 and 2854 cm−1 as 
well as around 1746 cm−1. According to literature, these 
bands are associated with the asymmetric and symmetric 
stretching vibration of the aliphatic -CH2 functional group 
(different fatty acid composition of the seed oil samples and 
therefore –CH2 chain lengths) and the functional group of 
the ester compound C=O (stretching vibration) (Guillén and 
Cabo 1999, 2000; Vlachos and Arvanitoyannis 2008).

Raman Spectroscopy

The raw Raman (after Fourier transformation) spectral data 
were not suitable for showing spectral differences (results 
not shown), because of background noise. Therefore, the 
pre-processed spectral data are presented in Fig. 3a. The 
areas with the clearest differences in the spectra are depicted 
as magnifications.  

The region between 3100 and 2800 cm−1 reveals differ-
ences and reflects characteristic scattered bands of symmet-
ric and antisymmetric (ν(C-H)) vibrations of the terminal 
chains of methyl (CH3) and methylene (CH2) groups of ali-
phatic molecules (Baeten et al. 1998). The two seed oils’ 
different fatty acid compositions, and thus the different -CH2 
chain lengths in the oil mixtures, are probably responsible 

Fig. 1   Scheme of PLS-R model 
building/optimization, internal 
and external validation, and 
system challenge with pure seed 
oil and adulterated samples. CV: 
internal cross validation (10 
data splits on training set)
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for these variations. Vibrations of the olefin groups, i.e., 
the saturated fatty acids, are characteristic at a Raman shift 
around 1660 cm−1 (region 2 in Fig. 3a) (Baeten et al. 1998). 
This also correlates with the content of saturated fatty acids 
in the two varieties of seed oils.

In Fig. 3a in region 3 at 1530 cm−1, the spectra of the 
pumpkin seed oil samples (gray lines) show significantly 
higher scattering intensities compared to the spectra of the 
rapeseed oil samples (black lines). Baeten et al. (2001) dem-
onstrated, depending on the refining process, that pigments 
(chlorophylls and carotenoids) were removed in edible oils 
that have a high intensity in this wavelength region (Baeten 
et al. 2001). Hence, the less extensive a refining process is, 

the more of these compounds remain in the edible oil and 
exhibit high intensities in this region of the spectrum. And in 
the presented study, exclusively refined rapeseed oil samples 
were investigated.

The apparent differences in the spectra are also described 
in the scores plot or by the loadings plot of the PCA. The 
loading plot (Fig. 3c) reveals that the grouping of the two 
seed oil types along PC1 is especially due to Raman scat-
tering intensity differences in the range of 3100–2800 cm−1, 
around 1660 cm−1 as well as 1050–880 cm−1. Two main 
groupings can be observed in the PCA score plot (Fig. 3b) 
of the first components, discriminating along PC1 with 
55% of the variance explained. This represents the seed 

Fig. 2   a Line plot of MIR measurements, pumpkin seed oil samples 
(n = 10, gray lines), rapeseed oil samples (n = 10, black lines)—
region 1/2: around 1050–880 cm−1. b PCA score plot (PC1/PC2) 
of pure oil samples (rapeseed oil samples, n = 44, black diamonds; 

pumpkin seed oil samples, n = 80, light gray squares) and training set 
(n = 48, yellow triangles < 10% adulteration and green triangles > 
10% adulteration) after pre-processing. c Loading plot of PC1
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oil differentiation. The data points of the pure rapeseed oil 
samples (black diamonds) are located in quadrants 3 and 4, 
whereas the data points of the pure pumpkin seed oil sam-
ples (gray squares) are sited in quadrants 1 and 2. The data 

points from a degree of adulteration below 10% group along 
PC2 in the pumpkin seed oil group. The PC2 describes the 
variation within a seed oil group, which might be explained 
by different chemical compositions (due to phenotype, 

Fig. 3   a Line plot of pre-processed Raman spectra, pumpkin seed 
oil samples (n = 10, gray lines), rapeseed oil samples (n = 10, black 
lines) - region 1: 3100 cm–2800 cm−1; region 2: 1660 cm−1; region 3: 
1530 cm−1. b PCA score plot (PC1/PC2) of pure oil samples (rape-

seed oil samples. n = 44, black diamonds; pumpkin seed oil samples, 
n = 80, light gray squares) and training set (n = 48, yellow triangles 
> 10% adulteration and green triangles < 10% adulteration) after pre-
processing. c Loading plot of PC1
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harvest year, etc.) (Stevenson et  al. 2007; Szydłowska-
Czerniak et al. 2010).

1H‑NMR Spectroscopy

Figure 4a inset 1 shows ten overlaid 1H-NMR spectra per 
pure seed oil variety. Three main spectral differences can be 
identified and are highlighted in the figure. In the range of 

2.74–2.76 ppm, for the rapeseed oil samples (black lines), an 
overlap of two triplets can be identified and for the pumpkin 
seed oil group (gray lines) one triplet is exhibited. In this 
region, the signals are associated with specific bis-allylic 
protons (=HC-CH2-CH=), which are also defined as poly-
unsaturated fatty acids. Depending on the content and com-
position of the alkyl groups in the acyl group in an oil, the 
signals lead to different shapes in the spectrum. Oil varieties 

Fig. 4   a Line plot of 1H-NMR measurements, pumpkin seed oil 
samples (n = 10, gray lines), rapeseed oil samples (n = 10, black 
lines) - region 1: 2.74–2.76 ppm; region 2: 1.99–2.01 ppm; region 3: 
0.98 ppm. b PCA score plot (PC1/PC2) of pure oil samples (rapeseed 

oil samples, n = 44, black diamonds; pumpkin seed oil samples, n = 
80, light gray squares) and training set (n = 48, yellow triangles < 
10% adulteration and green triangles > 10% adulteration) after pre-
processing. c Loading plot of PC1
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with a high content of linoleic and linolenic acids show an 
overlap of two triplets. If only linoleic acyl groups and no 
linolenic acyl groups are present in an oil sample, the spec-
trum exhibits a triplet (Guillén and Ruiz 2003b).  

Another difference in the oil varieties can be seen in inset 
2 (1.99–2.01 ppm). Here, the shape of the signals caused 
by the different contents of acyl groups varies in particular. 
The pattern of signals differs between the two varieties. This 
spectral region represents also the amount and distribution 
of unsaturated fatty acids (specific allylic protons) (Guillén 
and Ruiz 2003b). In particular, the pattern for the pumpkin 
seed oil group at 1.99–2.01 ppm indicates (Fig. 4a, inset 2) 
that only small amounts of oil acyl groups are present in 
the samples. In contrast, the distribution of the peaks in the 
signal of the rapeseed oil samples implies high contents of 
oleaginous allyl protons in combination with smaller pro-
portions of linoleic and linolenic acid acyl groups (Guillén 
and Ruiz 2003b). This correlates with the content of these 
fatty acids in rapeseed and pumpkin seed oil samples. While 
the highest content of acyl groups in rapeseed is the oleic 
acid groups (63%), the linoleic acid groups are dominant 
in pumpkin seed oils (54%) (Belitz et al. 2009; Guillén and 
Ruiz 2003b).

Additional variation as displayed in the line plot is present 
around 0.98 ppm. In this region, all rapeseed oil samples 
(black lines) show a triplet, whereas the pumpkin seed oil 
samples (gray lines) exhibit no intensity at all. This region 
is associated with the terminal methyl protons of n-3 poly-
unsaturated fatty acids (called Ω-3 including, e.g., linolenic 
fatty acid) (Castejón et al. 2014; Guillén and Ruiz 2003a). 
According to literature, the content of these fatty acids is 
9% for rapeseed oils and only 0.5% for pumpkin seed oils 
(Guillén and Ruiz 2003b; Rezig et al. 2012; Sakhno 2010; 
Stevenson et al. 2007) explaining the different behavior in 
the spectra.

To consider the impact of these regions on the multivari-
ate data analysis, a PCA was calculated. The score plot of 
the first two principal components is depicted in Fig. 4b. 
Two main groupings can be observed, differing along PC2 
with 39% of the variance explained, representing the vari-
ety of seed oil samples. Along PC1 (59% of the explained 

variance), the variance is described within a seed oil group. 
The data points with a degree of adulteration of less than 
10% (green triangles) scatter along PC1 and PC2 in the 
first quadrant. The loading plots indicate that the differ-
ences within the seed oil cluster (Fig. 4c) mostly result 
from the signal around 0.98 ppm, while the grouping along 
PC2 (results not shown) is due to differences in intensity in 
the range at 2.74–2.76 ppm (region 1) and 1.99–2.01 ppm 
(region 2).

Comparison of the Performances of the Three 
Spectroscopy‑Based Techniques

Assessment Based on Partial Least Squares‑Regression 
(PLS‑R) Results

A common method for quantifying adulteration using spec-
troscopic techniques is the multivariate PLS-R. The aim of 
PLS is to establish the functional relationship between an 
independently measurable variable (e.g., wavenumbers) and 
a dependent target variable (e.g., levels of adulteration of 
refined rapeseed oil in a sample of cold-pressed pumpkin 
seed oil). A PLS-R was performed to estimate the MDL 
(2 × RMSEP) for quantifying refined rapeseed oil in cold-
pressed pumpkin seed oil for each analytical technique using 
an independent extra test set (system challenge), according 
to the description of Downey and Kelly (2004). In the pre-
sent study, besides the calculation of the MDL, additional 
focus was on the assessment and comparison of other model 
parameters such as RMSE and R2 values, generated from 
the three spectroscopic methods. The PLS-R quantification 
results are summarized in Table 1.

The RMSE values (a measure of the spectral differences 
between the predictions of calibration/validation steps) and 
determination coefficients (R2

Pred) were used to assess the 
quality of the model (Medina et al. 2019; Riedl et al. 2015; 
Uncu and Ozen 2015). The lower and more comparable 
RMSEC, RMSECV, and RMSEP values are, the more reli-
able is the model (Liu et al. 2017; Riedl et al. 2015). R2

Pred 
indicates how accurately the model predicts new samples 
(separate independent test sets for system challenge: pool 2 

Table 1   PLS-R results of 
MIR, Raman, and 1H-NMR 
spectroscopy to detect refined 
rapeseed oil in pumpkin seed oil

LV optimal number of latent variables, R2
Pred determination coefficient for prediction, RMSEC root mean 

square error of calibration, RMSECV root mean square error of cross validation, RMSEP root mean square 
error of prediction for system challenge, MDL estimated minimum detection level = according to Downey 
and Kelly (2 × RMSEP) (Downey & Kelly, 2004)

Spectroscopic 
method

Optimal num-
ber of LV

R2
Pred RMSEC RMSECV RMSEP (system 

challenge)
Estimated 
MDL [% 
w/w]

MIR 4 0.993 2.196 3.122 2.384 4.8
Raman 3 0.983 3.202 4.465 4.591 9.2
1H-NMR 3 0.998 1.148 1.326 1.722 3.4
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and pool 4, adulterated with rapeseed oil samples 1 and 2, 
see Fig. 1). In general, a R2

Pred value above 0.9 also indicates 
high prediction ability (Uncu and Ozen 2015).

As reported in Table 1, the RMSEP and (accordingly) 
MDL values for Raman spectra are higher compared to the 
results of the MIR and 1H-NMR analysis. Only for adultera-
tion levels higher than 9.2% w/w refined rapeseed oil could 
be detected in pumpkin seed oil. In addition, the R2

Pred value 
for Raman spectroscopy indicates a lower predictive ability 
compared to calculations based on MIR and 1H-NMR spec-
tral data. The lowest estimated MDL is at 3.4% w/w using 
1H-NMR spectroscopy. The highest R2

Pred value was also 
determined for 1H-NMR spectroscopy.

The different PLS-R results obtained could be explained 
by the different excitation/vibration principles and result-
ing oscillations/signals of the three molecular spectroscopic 
techniques. This means that when molecules are excited in 
different ways, depending on the type of instrument, certain 
vibrations from molecules can be detected differently, result-
ing in a difference of the information provided by the spec-
tra. In MIR spectroscopy, molecular vibrations are excited 
(by, e.g., tungsten source) as a function of vibrating masses 
and bond strength and molecules are IR active only if they 
have a high dipole moment (Skoog and Leary 1996). Con-
jugated double bonds (e.g., linoleic acid), on the other hand, 
show a low dipole moment and are therefore IR inactive.

However, because Raman spectroscopy is based on a dif-
ferent type of excitation (by monochromatic laser beam), 
these bonds are Raman active and therefore can be identified 
in the Raman spectrum (Skoog and Leary 1996). Thus, the 
two analytical techniques have a complementary detection 
capability. In addition to the determination of the fatty acid 
composition, pigments or volatile components can be identi-
fied by Raman spectroscopy (see “ Raman Spectroscopy”) 
(not by MIR spectroscopy). Nevertheless, in the present 
study, lower detection levels of adulteration were obtained 
for Raman spectroscopy. Possibly, this additional informa-
tion has less impact on the model results.

1H-NMR spectroscopy involves the excitation of hydro-
gen nuclei. This allows the deduction of the electronic struc-
ture of a molecule and its functional groups, rendering this 
analytical technique very sensitive (Webb 2006). Depending 
on the shape of a signal (of a singlet, triplet, etc.) (see “1H-
NMR Spectroscopy”) in the edible oil spectrum, individual 
alkyl groups in the acyl group can also be identified. In the 
area of n-3-unsaturated fatty acids, the loading plot of PC1 
shows strong differences between the two oil types (see “1H-
NMR Spectroscopy”), which could affect the model results 
and consequently would explain the lower detection limits 
of rapeseed oil in pumpkin seed oil for 1H-NMR spectros-
copy. In summary, depending on the variety and production 
process, different chemical compounds are predominant in 
the edible oil. Depending on the spectroscopic technique, 

this results in different bands/signals in the spectrum and 
possibly in a different weighting of the PLS-R results.

1H-NMR spectroscopy exhibits the best results (regarding 
PLS-R parameters) for the example reported in this study, 
due to its excitation principle-based sensitivity for certain 
molecules, which are relevant to the model, as mentioned 
above in “Visualization and Explorative Data Analysis.”

There are no studies describing the detection of adul-
teration of pumpkin seed oil with refined rapeseed oil using 
spectroscopic techniques. However, in order to be able to 
classify and assess the PLS-R results, the following sec-
tion measures the results with approaches described in the 
literature (calculations, assessment parameters, model gen-
eration) for comparable authenticity problems and spectro-
scopic techniques.

Balbino et al. (2022) investigated the adulteration of 
pumpkin seed oil with refined sunflower oil (Balbino et al. 
2022). The authors used OPLS regression in combination 
with GC-FID and NIR spectroscopy. Differences in sterol 
contents between the two types of oil were observed (C-H 
and O-H third overtones and ArC-H and C-H first over-
tones). Pumpkin seed oils are rich in Δ7-sterols (except 
Δ7-stigmasterol), whereas refined sunflower oil has a high 
content of Δ5-sterols (except campestenol). The RMSEP 
values were not evaluated, but the authors calculated the 
RMSEE and RMSECV, with values of 6.470 and 6.668 
determined for the model based on the β-sitosterol content 
and 2.298 and 2.792 based on the Δ7,22,25-stigmasterol 
content. These RMSECV values are within the range of 
those determined for the present example and indicate that 
the quality of the generated models is comparable. In the 
present study, slight differences in sterol composition (e.g., 
bands around 1440 cm−1 and 1350 cm−1) (Baeten et al. 
2001) between the cold-pressed pumpkin seed oil and the 
refined rapeseed oil samples were detected by Raman spec-
troscopy, but these bands took a subordinate role in the mul-
tivariate data analysis. However, by using MIR spectroscopy 
in our study, no specific bands for the sterol molecules could 
be identified from the spectra, possibly related to the fact 
that these molecules were not absorbed or overlapped by 
other bands. Raman and MIR spectroscopy can be used to 
obtain sample structural information (e.g., fatty acid com-
position), while NIR spectroscopy can be used to determine 
broad bands (Eliaerts et al. 2020). In another study, the adul-
teration of pumpkin seed oil with sunflower oil was investi-
gated using Raman spectroscopy (portable device) (Becze 
and Simedru 2020). The areas of the spectral bands from the 
Raman spectrum were used to quantify the adulteration, and 
a prediction equation was developed using PLS with four 
band areas included. These bands were assigned to vibration 
bands of cis (C=C) and cis (=C-H) of unsaturated fatty acids 
as well as scissoring vibrations and twisting vibrations of 
methylene. The highest band areas in pumpkin seed oil were 
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assigned to the vibrations of the methylene groups while 
in sunflower oil the highest band area could be assigned to 
the vibrations of unsaturated fatty acid group. Also, in the 
present study, these ranges showed differences between the 
oil types. Nevertheless, the Raman region between 3100 and 
2800 cm−1, which indicated the biggest difference between 
the pumpkin seed oil group and the rapeseed oil group in 
the current study, was not included in the multivariate data 
analysis in the study of Becze et al. (2020) (Becze and Sime-
dru 2020).

Further comparisons cannot be carried out due to the 
different model design. Pfister et al. (2018) investigated 
the adulteration of sunflower oil with mineral oil by NIR 
and MIR (Pfister et al. 2018). The authors determined the 
LOD values, which are based on the determination of the 
detection limit using the blank method. This means that in 
a certain number of samples that were measured the analyte 
they were looking for was not present (the unspiked natural 
sunflower oils). Using a previously generated calibration 
function (using multivariate PLS regression from samples 
spiked with mineral oil), the content of the blank samples 
was determined. These calculated contents were plotted 
in the form of a distribution diagram. From the Gaussian 
normal distribution fitted to the data, the detection limit 
was estimated using the 3s limits (two-sided). Using this 
approach, it was possible to calculate LOD values of 0.12% 
for NIR and 0.16% for MIR. This example illustrates that 
very low LOD can be calculated using spectroscopy-based 
and regression models. The authors did not use an independ-
ent test set for the calculation, and the comparison of the 
methods on the basis of other parameters such as the RMSE 
values was not the focus. It is less possible to compare the 
two studies because the calculations of the LODs or MDLs 
are based on different mathematical calculations. Moreover, 
the aim in the present study was to include not only the 
MDLs but also other parameters such as RMSE values from 
the individual spectroscopic techniques in the assessment of 
the quality of the models.

McDowell et al. (2018) described the detection of refined 
sunflower and rapeseed oil in cold-pressed rapeseed oil by 
MIR and Raman spectroscopy (McDowell et al. 2018). The 
loading plots of the PCA of the spectra of both techniques 
show a similar picture as in the present study. Differences 
between sunflower and rapeseed oil are particularly evident 
in the fatty acid distribution, additionally in the areas reveal-
ing the specific bands for the pigments. Using MIR spec-
troscopy, better R2

Pred and the MDL values (R2
Pred: 0.99, 

MDL: 9% w/w) were calculated compared to analysis by 
Raman spectroscopy (R2

Pred: 0.96, MDL: 15% w/w), which 
is in the same range to the present study. In a further study, 
McDowell et al. (2019) calculated the MDLs for 1H-NMR 
spectroscopy for the identical authenticity questions and 
sample sets. For this and in contrast to the present study, 

three specific regions in the spectrum were used (0.52–3 
ppm, 3.9–4.56 ppm, and 4.94–5.8 ppm), resulting in 3217 
data points. Normalization to the glycerol signal (3.9–4.56 
ppm) was subsequently performed (the same for the present 
study). For the detection of sunflower oil in rapeseed oil, the 
MDL of 8% (w/w) and an R2

Pred of 0.99 were determined 
using PLS-R (McDowell et al. 2019). Accordingly, the low-
est MDL and highest RMSE values were also obtained for 
1H-NMR analysis.

Alonso-Salces et al. (2022) determined the content of 
adulterant in olive oil samples, adulterated with various veg-
etable oils (sunflower oil, hazelnut oil, etc.), by 1H-NMR 
spectroscopy and PLS-R analysis (Alonso-Salces et  al. 
2022). The authors carried out the same sample prepara-
tion as described in the present study. Normalization to the 
glycerol signal was also performed. However, Alonso-Salces 
et al. used a bin width of 0.02 ppm (bucketing) and autoscal-
ing or centering as pre-processing steps. Depending on the 
adulterant and the degree of adulteration, RMSEP values 
between 0.32 and 3.4 (% vegetable oil) were determined. 
Furthermore, detection limits between 2 and 5% (depending 
on the type of adulteration) were calculated (in the range of 
the present study), but the evaluation of these limits was not 
described in the publication.

In summary, the values generated in the present study 
(RMSEP, RMSECV, MDL) are basically comparable or in 
a similar range as described in the literature. However, the 
studies described above illustrate that there are very differ-
ent approaches for the quantitative determination of adul-
terants in edible oils. These procedures differ in spectrum 
evaluation (e.g., selection of specific, spectral regions or 
bucketing), in model building, optimization and validation, 
type of model (e.g., PLS-R, OPLS), or in the calculation of 
detection levels (LOD, MDL). A unified approach does not 
yet exist, which complicates the comparison of results with 
other techniques or authenticity questions.

Applicability for Laboratories (as Screening Methods)

With regard to the quantification results and the discus-
sion with existing literature, it is not possible to provide a 
uniform conclusion concerning which spectroscopy-based 
method is the most suitable, since this depends strongly 
on the authenticity question to be investigated. Therefore, 
this study also considers general as well as environmental 
aspects, which are shown in Table 2.

A prerequisite for the application of the three spectro-
scopic techniques is the need for trained personnel who are 
knowledgeable about the techniques (operation, setting of 
parameters, etc.), to be able, for instance, to detect any sol-
vent residues (from cleaning procedure).

In order to detect food fraud at an early stage and there-
fore to be able to act quickly before food products reach 
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the market, fast and simple analytical applications are nec-
essary. Compared to NMR spectroscopy, MIR and Raman 
spectroscopy offer significant advantages. Sample prepara-
tion does not need to be performed. Moreover, a single MIR 
and Raman spectroscopic measurement takes approximately 
2 min. In addition, there are handheld devices that can be 
taken on site (during the sampling) to perform the meas-
urements onsite. With an adapted cloud-based solution, the 
evaluation could be performed in minutes. However, one 
disadvantage (when a large number of samples need to be 
measured) is that the instruments are not equipped with an 
autosampler and therefore each sample must be manually 
placed on the ATR crystal or in the glass cuvette. In NMR 
spectroscopy, on the other hand, autosamplers are available, 
which saves a considerable amount of time in the labora-
tory. Furthermore, NMR spectral data provide informa-
tion about individual fatty acids (Guillén and Ruiz 2003a, 
2003b), while MIR and Raman data do not. It is also pos-
sible to identify and determine from an obtained spectrum 
compounds (phenols, aldehydes) that play a significant role 
in sensory properties of an oil or indicate a progressing oxi-
dation of the oil.

Nevertheless, with regard to environmental aspects, the 
advantages for Raman and MIR outweigh those for NMR 
spectroscopy. Sample preparation for NMR analysis requires 
in this particular example deuterated chloroform, which is 
hepatotoxic and likely carcinogenic. The other two tech-
niques preclude the use of hazardous chemicals during 
the sample preparation. After a measurement by MIR and 
Raman spectroscopy, only the ATR crystal and the glass 
cuvette need to be cleaned with ethanol, which is much less 
hazardous than deuterated chloroform.

For the specific example, based on the PLS-R results (2 
× RMSEP) and considering the described environmental 
aspects, MIR spectroscopy is recommended for the routine 

and official control to get a fast first inside about the authen-
ticity of the respective edible oil sample. The samples could 
be measured directly after receipt in the laboratory without 
further sample preparation within a short time, evaluated 
and, if adulteration is suspected, analyzed for clarification 
using accredited, chromatographic methods according to 
AOAS (Official Method, 2009/7th). These techniques would 
help food inspectors detain suspect edible oil samples early, 
before it is available to consumers.

Conclusions

The results of this study demonstrate that it is possible to 
detect below 10% refined rapeseed oil as an adulterant in 
pumpkin seed oil using spectroscopic methods and chemo-
metric evaluation. The lowest contents of adulterant could 
be detected by 1H-NMR analysis (MDL 3.4% w/w). For 
MIR and Raman spectroscopy, minimum detection limits 
of 4.8% w/w and 9.2% w/w were obtained. MIR and Raman 
spectroscopy are more efficient as screening tools than 1H-
NMR analysis, since these two methods do not require sam-
ple preparation (only homogenization). This also applies for 
the commonly employed chromatographic techniques, which 
demand significantly more laboratory effort and therefore 
are more time-consuming. To challenge the obtained per-
formance of the models, a larger independent extra test set 
should be analyzed.

There is a large variety of literature describing the quan-
tification of adulteration in edible oils, but approaches dif-
fer in terms of the number of samples included for model 
calculation and development and basis of calculation for 
MDL as well as the performance parameters used to assess 
the mathematical models. Therefore, to harmonize spectros-
copy-based methods in combination with multivariate data 

Table 2   Comparison of the three investigated spectroscopic techniques taking into account general aspects as well as environmental aspects, par-
ticularly with regard to the analyzed authentication issue

✗: no; ✓: yes; **excluding homogenization

Spectroscopic method

MIR spectroscopy Raman spectroscopy 1H-NMR spectroscopy

General aspects
Principle Molecular vibrations Light inelastic scattering Spin transition
Determination of content of specific components ✓ ✓ ✓
Structure elucidation ✓ ✓ ✓
For investigated example
Sample preparation** ✗ ✗ ✓
Use of hazardous chemicals during sample preparation ✗ ✗ ✓
Use of hazardous chemicals during measurement ✓ ✓ ✗
Time of analysis ~ 2 min ~ 2 min ~ 20 min
Automatization of analysis (time saving) ✗ ✗ ✓
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analysis, the future focus should be on developing a uniform 
approach regarding model development, evaluation strate-
gies, and calculation of minimum detection limits with the 
aim to better compare results generated by different spectro-
scopic techniques.
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