
1669

ABSTRACT

At the individual cow level, suboptimum fertility, 
mastitis, negative energy balance, and ketosis are major 
issues in dairy farming. These problems are widespread 
on dairy farms and have an important economic im-
pact. The objectives of this study were (1) to assess the 

potential of milk mid-infrared (MIR) spectra to predict 
key biomarkers of energy deficit (citrate, isocitrate, 
glucose-6 phosphate [glucose-6P], free glucose), keto-
sis (β-hydroxybutyrate [BHB] and acetone), mastitis 
(N-acetyl-β-d-glucosaminidase activity [NAGase] and 
lactate dehydrogenase), and fertility (progesterone); 
(2) to test alternative methodologies to partial least 
squares (PLS) regression to better account for the spe-
cific asymmetric distribution of the biomarkers; and (3) 
to create robust models by merging large datasets from 
5 international or national projects. Benefiting from 
this international collaboration, the dataset comprised 
a total of 9,143 milk samples from 3,758 cows located in 
589 herds across 10 countries and represented 7 breeds. 
The samples were analyzed by reference chemistry for 
biomarker contents, whereas the MIR analyses were 
performed on 30 instruments from different models and 
brands, with spectra harmonized into a common for-
mat. Four quantitative methodologies were evaluated 
to address the strongly skewed distribution of some 
biomarkers. Partial least squares regression was used 
as the reference basis, and compared with a random 
modification of distribution associated with PLS (ran-
dom-downsampling-PLS), an optimized modification 
of distribution associated with PLS (KennardStone-
downsampling-PLS), and support vector machine 
(SVM). When the ability of MIR to predict biomark-
ers was too low for quantification, different qualitative 
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methodologies were tested to discriminate low versus 
high values of biomarkers. For each biomarker, 20% of 
the herds were randomly removed within all countries 
to be used as the validation dataset. The remaining 
80% of herds were used as the calibration dataset. In 
calibration, the 3 alternative methodologies outperform 
the PLS performances for the majority of biomarkers. 
However, in the external herd validation, PLS provided 
the best results for isocitrate, glucose-6P, free glucose, 
and lactate dehydrogenase (coefficient of determination 
in external herd validation [R2v] = 0.48, 0.58, 0.28, and 
0.24, respectively). For other molecules, PLS-random-
downsampling and PLS-KennardStone-downsampling 
outperformed PLS in the majority of cases, but the 
best results were provided by SVM for citrate, BHB, 
acetone, NAGase, and progesterone (R2v = 0.94, 0.58, 
0.76, 0.68, and 0.15, respectively). Hence, PLS and SVM 
based on the entire dataset provided the best results for 
normal and skewed distributions, respectively. Comple-
mentary to the quantitative methods, the qualitative 
discriminant models enabled the discrimination of high 
and low values for BHB, acetone, and NAGase with a 
global accuracy around 90%, and glucose-6P with an 
accuracy of 83%. In conclusion, MIR spectra of milk can 
enable quantitative screening of citrate as a biomarker 
of energy deficit and discrimination of low and high 
values of BHB, acetone, and NAGase, as biomarkers 
of ketosis and mastitis. Finally, progesterone could not 
be predicted with sufficient accuracy from milk MIR 
spectra to be further considered. Consequently, MIR 
spectrometry can bring valuable information regarding 
the occurrence of energy deficit, ketosis, and mastitis 
in dairy cows, which in turn have major influences on 
their fertility and survival.
Key words: Fourier transform mid-infrared 
spectrometry, ketosis, negative energy balance, mastitis, 
fertility

INTRODUCTION

At the individual cow level, suboptimum fertil-
ity, mastitis, negative energy balance, and associated 
metabolic diseases are major issues in dairy farming. 
These problems have widespread incidence and have 
an important economic impact. Energy deficit can be 
considered as a central issue because almost all dairy 
cows experience a period of negative energy balance af-
ter calving. This is associated with immunosuppression 
and depending on the intensity of this deficit, between 
30% and 50% of dairy cows suffer from associated met-
abolic and infectious diseases (LeBlanc, 2010; Wathes 
et al., 2021). Among the associated diseases, ketosis is 
particularly damaging. McArt et al. (2012) reported an 
average incidence of subclinical and clinical ketosis of 

43%, whereas economic losses per cow may range from 
188€ to 347€ (McArt et al., 2015; Gohary et al., 2016). 
Mastitis is also a major challenge in dairy herds, with 
Olde Riekerink et al. (2008) estimating the incidence 
of clinical mastitis at 23%, whereas the associated cost 
per cow per year are estimated between 356€ and 716€ 
(Puerto et al., 2021). Finally, fertility problems such as 
delayed resumption of cyclicity, prolonged luteal phase, 
fertilization failure, or failure to sustain pregnancy 
are also important issues affecting particularly high-
yielding dairy cows (Leroy et al., 2008) and are leading 
to an increase of the inter-calving interval and ratio 
of insemination to conception, while decreasing rate to 
first insemination (Roche et al., 2011).

Having relevant and frequent indicators of these 
issues at the individual cow level, through associated 
milk biomarkers, could support herd management by 
proposing an early detection of subclinical or clini-
cal issues. Estimation of biomarkers in milk by Fou-
rier transform mid-infrared (MIR) spectrometry could 
meet this role. Indeed, milk is available daily without 
any invasive process and MIR analysis is now common-
place and accessible in many dairy regions.

Regarding energy deficit, citrate in milk, among 
various biomarkers, has been highlighted by Bjerre-
Harpøth et al. (2012) as having the greatest response 
during a period of negative energy balance. Citrate 
plays a central role in cellular energy metabolism, being 
an intermediate in the citric acid cycle and a central 
component in the de novo synthesis of fatty acids in 
the mammary glands (Garnsworthy et al., 2006; Ak-
kerman et al., 2019). More recently, Billa et al. (2020) 
and Pires et al. (2022) also highlighted isocitrate, free 
glucose, and glucose-6 phosphate (glucose-6P) as 
relevant biomarkers of energy balance. Krogh et al. 
(2020) observed that variation of these molecules was 
largely due to between-cow variation, which supports 
their use as biomarkers at the individual cow level. 
Energy deficit and excessive body fat mobilization may 
cause subclinical or clinical ketosis when the supply of 
nonesterified fatty acids overloads the liver and their 
degradation products are diverted to ketone bodies (In-
gvartsen, 2006; Esposito et al., 2014). Ketosis is already 
routinely monitored through well-known milk biomark-
ers, which are the major ketone bodies (i.e., BHB and 
acetone; Enjalbert et al., 2001). For mastitis, SCC is 
the main milk biomarker. However, this measurement 
relies on flow cytometry, which is a complex and ex-
pensive methodology. Therefore, some authors have 
suggested alternative indicators to improve detection 
and diagnosis of mastitis. For example, Chagunda et 
al. (2006) and Hovinen et al. (2016) suggested N-acetyl-
β-d-glucosaminidase activity (NAGase) as a relevant 
indicator because it reflects damage to epithelial cells 
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rather than the counting of somatic cells, and may help 
in discriminating between minor and major pathogen 
infections. Alternatively, lactate dehydrogenase (LDH) 
is an enzyme that is part of the glycolytic pathway and 
is known to increase with mastitis, and shows high sen-
sitivity to mastitis detection (Chagunda et al., 2006). 
Krogh et al. (2020) observed that NAGase and LDH 
were not heavily influenced by herd factors and con-
cluded that they could be considered as useful biomark-
ers for mastitis at the cow level for precision livestock 
farming. Finally, measuring progesterone in milk would 
provide important information on the reproductive 
status of dairy cows, particularly for the detection of 
resumption of ovulation, pregnancy, or atypical ovar-
ian patterns due to delayed ovulation or presence of a 
persistent corpus luteum (Bulman and Lamming, 1978; 
Friggens and Chagunda, 2005; Crowe, 2008).

However, the development of MIR models to predict 
these biomarkers raises several challenges or questions. 
First, although MIR models predicting citrate, acetone, 
and BHB already exist (de Roos et al., 2007; Grelet 
et al., 2016), to our knowledge this is the first study 
attempting to predict milk isocitrate, glucose-6P, free 
glucose, NAGase, LDH, and progesterone with MIR 
while predicting in routine (e.g., in the frame of DHI) 
these biomarkers could be of great interest. Moreover, 
concentrations of some of these molecules are far below 
the considered detection threshold of 100 ppm with 
MIR (Dardenne et al., 2015). Previous works have 
shown the possibility of getting information on totally 
indirect phenotypes (e.g., predicting body energy sta-
tus of cows or their methane emissions; McParland et 
al., 2011; Dehareng et al., 2012). These models rely 
on the global changes in milk composition and their 
associations with the phenotypes of interest, but the 
possibility to extract information from milk MIR spec-
tra linked with isocitrate, glucose-6P, free glucose, NA-
Gase, LDH, and progesterone is unknown. In addition, 
some molecules show a particular distribution, with 

most healthy cows having low content, whereas sick 
cows show an exponential increase of the biomarker of 
interest. The resulting positively skewed distribution is 
particularly difficult to model, as it goes beyond the 
linear relationship of milk molecules and spectral ab-
sorbance values. Other authors emphasize the lack of 
compatibility between the main modeling method with 
MIR (i.e., partial least squares [PLS] regression) and 
these asymmetric distributions of molecules, as well as 
the need for alternative modeling methodologies (Soy-
eurt et al., 2020; Kostensalo et al., 2023). Finally, to 
be used for large-scale phenotyping, MIR models must 
be robust (i.e., provide reliable predictions under all 
conditions), covering as much variability as possible to 
avoid extrapolation (Grelet et al., 2021).

Therefore, the objectives of this study were (1) to 
evaluate the potential of milk MIR spectra to predict 
key biomarkers of energy deficit (citrate, isocitrate, glu-
cose-6P, free glucose), ketosis (BHB and acetone), mas-
titis (NAGase and LDH), and fertility (progesterone); 
(2) to test alternative methodologies to PLS, random-
downsampling-PLS, and KennardStone-downsampling-
PLS, specifically designed to better account for the 
specific asymmetric distribution of biomarkers, and 
SVM, which is known for its capacity to handle non-
linear relationships; and (3) to create robust models by 
merging large datasets from 5 international or national 
projects, reaching a total number of 9,143 samples.

MATERIALS AND METHODS

Projects and Data

Data used in this study were collected in 3 interna-
tional and 2 national projects, allowing the merger of a 
total of 9,143 samples from 3,758 cows across 589 herds 
in 10 countries, collected from 2013 to 2020. Samples 
were collected in experimental and commercial herds 
within the frame of the OptiMIR project (Interreg IVB 
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Table 1. Main sampling characteristics per project

Project
Year of 

sampling   Countries   Breeds  
Lactation 
stage Herds Cows Samples

OptiMIR 2013–2014 France, Germany, Luxembourg   Abondance, Montbéliarde, 
Holstein, and Normande

  Entire 
lactation

429 755 1,170

GplusE 2015–2017 Belgium, Denmark, England, 
Germany, Ireland, Italy, and 
Northern Ireland

  Holstein   Calving to 
DIM 50

50 2,670 5,947

Qualitas 2016 Swiss   Holstein, Brown Swiss, and 
Swiss Fleckvieh

  Calving to 
DIM 125

6 210 1,732

IndiKuh 2017–2018 Germany   Holstein   Calving to 
DIM 41

5 44 195

D4Dairy 2020 Austria   Simmental, Holstein, 
Fleckvieh, and crossbred cows

  Entire 
lactation

99 99 99

Total             589 3,758 9,143
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NEW) and GplusE project (Genotype Plus Environ-
ment, FP7-Project) and in commercial herds within the 
IndiKuh project (IndiKuh, funding code: 2817905815), 
D4Dairy project (FFG comet with support of the 
Austrian government, project 872039, https:​/​/​d4dairy​
.com/​), and a Swiss national project (data provided by 
Qualitas). The main characteristics of each sampling 
(i.e., countries, breeds, number of samples, and so on) 
are reported in Table 1. The merging of these datasets 
provided wide variability in terms of breeds, lactation 
stages, parities, diets, seasons, management practices, 
and geographical areas.

Milk Analysis for Biomarkers

All samples were collected following the guidelines 
edited by the International Committee for Animal Re-
cording (ICAR Dairy Cattle Milk Recording Working 
Group, 2017) and with ICAR-approved milk samplers. 
Morning and evening samples were collected for MIR 
analysis and only morning samples were analyzed by 
reference analysis. Morning samples were therefore 
split in 2 aliquots, for both reference and MIR analysis. 
Aliquoting was realized directly in the milking room 
when milk was still at udder temperature to prevent 
fat-aqueous phasing and unperfect aliquoting. Aliquots 
for biomarker analysis were stored at 4°C right after 
sampling, without preservative, and were stored within 
2 h at −18°C until shipping. Samples were sent frozen, 
with refrigerated delivery with dry ice or ice blocks to 
the respective laboratories. Samples from the OptiMIR, 
IndiKuh, and D4Dairy projects were analyzed at CRA-
W (Belgium) for BHB, acetone, and citrate. Analysis 
were performed with a continuous flow analyzer (Scan 
++, Skalar, Breda, the Netherlands) following the pro-
cedure described by de Roos et al. (2007) and Grelet 
et al. (2016). All samples were analyzed twice, and 

samples with variation higher than 5% were re-ana-
lyzed. Samples from the GplusE project were analyzed 
at the Department of Animal and Veterinary Sciences, 
Aarhus University, Denmark, for isocitrate, glucose-6P, 
free glucose, BHB, NAGase, LDH, and progesterone. 
Fluorometric end-point analyses were used to determine 
milk glucose and glucose-6P (Larsen, 2015), isocitrate 
(Larsen, 2014), and BHB (Larsen and Nielsen, 2005). 
The indigenous enzymes LDH (EC. 1.1.1.27) and NA-
Gase (EC 3.2.1.30) were analyzed by fluorometric assays 
according to Larsen (2005) and Larsen et al. (2010) to 
provide results in µmol product (4-methylumbellifer-
one)/min × mL, but are later expressed in the docu-
ment in unit/L. For these molecules, intra-plate assay 
repeatability was below 4.5% coefficients of variation 
(CV) and inter-plate assay reproducibility was below 
6.0% CV. Milk progesterone was determined using a 
commercial ELISA assay (Ovucheck, Biovet, Canada), 
based on the competitive binding of unlabeled proges-
terone present in the standard or whole milk sample, 
and a fixed quantity of progesterone labeled with the 
enzyme alkaline phosphatase (AP), to binding sites 
on a limited amount of specific progesterone antibod-
ies. After incubation, all components other than those 
bound to the plate wells were washed away. The amount 
of bound AP-labeled progesterone remaining on the 
wells was inversely proportional to the concentration 
of the unlabeled progesterone present in the sample. 
The bound labeled progesterone was then measured 
by reacting the AP with its substrate during a second 
incubation. The color produced was measured spectro-
photometrically and the concentration of progesterone 
in the milk was determined from a standard curve. The 
recommendations given by the manufacturer were fol-
lowed. Intra-plate assay repeatability was 5.2% CV and 
inter-plate assay reproducibility was 6.8% CV. Samples 
from the Swiss national project were analyzed for ace-
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Table 2. Number of samples used in models per biomarker and per country1

Country
Isocitrate 
(mmol/L)

Citrate 
(mmol/L)

Glucose-6P 
(mmol/L)

Free glucose 
(mmol/L)

BHB 
(µmol/L)

Acetone 
(mmol/L)

NAGase 
(unit/L)

LDH 
(unit/L)

Progesterone 
(ng/mL)

Austria   98     99 86      
Belgium 594   594 594 617   594 594 291
Denmark 332   338 338 341   338 338 338
England 2,014   2,015 2,015 2,043   2,004 2,004  
France   316     681 149      
Germany 105 82 105 105 500 44 105 105 105
Ireland 1,145   1,139 1,112 1,164   1,143 1,142 156
Italy 439   439 439 650   439 439 439
Luxembourg   104     197 49      
Northern Ireland 874   872 873 874   874 874 651
Switzerland           1,671      
Total 5,503 600 5,502 5,476 7,166 1,999 5,497 5,496 1,980
1Glucose-6P = glucose-6 phosphate; NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.

https://d4dairy.com/
https://d4dairy.com/
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tone with an AutoAnalyzer 3 (Bran+Luebbe). Not all 9 
biomarkers were analyzed in all projects or subprojects. 
Of the 9,143 samples, the number of samples analyzed 
for each biomarker ranged from 600 for citrate to 7,166 
for BHB. Table 2 shows the number of analysis for each 
biomarker according to countries.

Milk Sample Analysis for MIR Spectra

Aliquots for MIR analysis were stored at 4°C with 
0.02% to 0.03% bronopol until analysis. Analyses were 
performed locally on a wide range of instruments with 
a total of 30 spectrometers used to analyze the samples: 
24 Foss instruments of models FT2, FT6000, FT+, 
and FT7 (Foss, Hillerød, Denmark), 5 Bentley FTS 
(Bentley, Chaska, MN), and 1 Standard Lactoscope 
FT-MIR automatic (Delta Instruments, Drachten, the 
Netherlands). All the spectra from the different instru-
ments were standardized to be merged into a common 
dataset following the procedure described in Grelet et 
al. (2015). Morning and evening samples were analyzed 
separately but merged into a daily spectrum, to be 
in line with milk recording 24H, in which recombined 
samples of a.m. and p.m. milking are analyzed.

Data Editing and MIR Model Development

To avoid erroneous association between spectra and 
sample, as well as analytical issues during analysis, a 
local fat model was applied to the spectra and the gen-
erated predictions were compared with the predictions 
provided by the laboratories. Records with a differ-
ence above 0.3 g/100 mL between local and laboratory 
predictions were discarded (n = 218 records deleted) 
to prevent the wrong association between spectra and 
samples, or other analytical errors. This threshold was 
highlighted in a study by Zhang et al. (2021). Spec-
tra with a standardized Mahalanobis distance (GH) 
greater than 10 were eliminated (n = 54 records de-
leted). A high GH value was intentionally used as the 
threshold because previous work showed that keeping 
large spectral variability in the dataset was beneficial 
to the robustness of the developed model (Grelet et al., 
2021). Additionally, only records with DIM between 5 
and 365 were retained (n = 88 records deleted) and 
reference values under quantification thresholds were 
discarded. All these aforementioned edits eliminated 
9% of the samples, and resulted in a dataset of 8,783 
records. In descriptive statistics, skewness of each vari-
able was calculated as

skewness
mean
SD

=
−( ) −( )

∑
−

,
N

N N
xi

1 2

3

with N being the number of samples and xi the ith 
observation within each variable.

The MIR spectra were pretreated by a first deriva-
tive with a gap of 5 wavenumbers. The selected spectral 
area consisted of 212 wavenumbers from 968.1 to 1,577.5 
cm−1, 1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, 
and 2,831.0 to 2,966.0 cm−1 to exclude spectral areas 
not reproducible between instruments (Grelet et al., 
2021) and the absorbance values were mean-centered.

For each biomarker, a dataset was constituted by 
keeping only the records with reference values and 
MIR spectra. Each dataset was then split to create an 
external herd validation dataset, randomly removing 
20% of the herds (i.e., 120 herds out of 589) across 
all countries to be used as the validation dataset. The 
remaining 80% were used as the calibration dataset. 
The modifications to the distribution described below 
were only performed in the calibration dataset and the 
original distribution for each biomarker in the valida-
tion dataset was kept unchanged, to be as close as 
possible to the real field application conditions. In 
both the calibration and validation datasets for each 
biomarker, all samples were retained without removing 
outliers.

As a basis for comparison, the first models were de-
veloped using PLS regression, this being the most com-
monly used method. The number of latent variables 
was set according to the breakpoint of the root mean 
square error (RMSE) slope during the cross-validation 
step. However, as mentioned by Soyeurt et al. (2020), 
PLS is not adapted to handle asymmetric distributions 
of molecules due to its linear structure. Therefore, 
to better take into account the strongly right skewed 
distributions of some molecules, 2 methodologies of 
modification of the distribution were specifically devel-
oped and tested to move toward a normal distribution. 
Partial least squares regression was later applied on the 
modified datasets.

The first methodology was the one used in Grelet et 
al. (2016), randomly removing a portion of the low val-
ues to reduce the over-representation of low values in 
the dataset. The thresholds for discriminating low and 
high values were obtained from the literature or were 
optimized during the cross-validation step regarding the 
model R2cv, and the proportion of low values to be re-
moved was calculated to balance equally the proportion 
of low and high values. The random elimination was 
performed by cyclic iterations. After downsampling, 
the proportion of high values, and especially extreme 
high values, was still under-represented. Therefore, 
a logarithmic (10) transformation was applied to the 
reference values to be closer to a normal distribution. 
Partial least squares regression was then applied to 
the reduced dataset. This random modification of the 
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distribution associated with PLS is later referred to as 
random-downsampling-PLS.

However, the random elimination of samples, by dis-
carding samples of interest, inevitably leads to loss of 
variability and robustness of the models. Therefore, a 
second methodology was also tested for an optimized 
modification of the distribution to keep only the most 
informative samples in the dataset while harmonizing 
the distribution of samples over the range of reference 
values. To do this, a 3-step methodology was applied 
which is schematically represented in Figure 1. The 
dataset for each biomarker was first divided into 20 
subsets of equal Y-interval across the Y range. In a sec-
ond step, within each subset, a fixed number of samples 
(e.g., n = 100) was selected using the Kennard-Stone 
algorithm, which iteratively selects the 2 most spec-
trally different samples until the number of samples 
to be selected was reached. The number of samples to 

be selected was manually optimized between 50 and 
200. When the number of samples in the subset was 
lower than the number of samples to be selected (i.e., 
at the right end of the distribution containing samples 
with high content of biomarkers), all the samples were 
retained. In a third step, the selected samples among 
the 20 subsets were merged to compose a dataset with 
a harmonized distribution along the Y range, but 
keeping the most informative samples from the initial 
dataset. Finally, a logarithmic (10) transformation was 
applied to the reference values and a PLS regression 
was applied to the data as the extreme values were 
still under-represented. This optimized modification of 
the distribution associated with PLS is referred to as 
KennardStone-downsampling-PLS.

Support vector machines regression (SVM-R) was 
tested as an alternative quantitative methodology to 
overcome the specific distribution. The SVM-R is a 
linear method adapted to nonlinear relationships due 
to its capacity to find a linear link in a space of higher 
dimension. In regression the support vectors are the 
ones including a maximum of samples in the regres-
sion within an acceptable margin (Brereton and Lloyd, 
2010). Support vector machines regression was used 
after a PLS compression to reduce the dimension of the 
dataset to 14 latent variables. The LIBSVM algorithm 
was used with the epsilon version and a radial basis 
function kernel. The gamma, cost, and epsilon hyperpa-
rameters were optimized with a grid-search to minimize 
the RMSEcv. Due to the capacity of SVM-R to handle 
nonlinear data, no log-transformations were applied to 
biomarker contents.

Finally, when the ability of MIR to predict biomark-
ers was too low to enable rough quantitative screen-
ing (R2cv < 0.74; Grelet et al., 2021), a qualitative 
methodology was tested to assess the possibility of 
discriminating low versus high values of biomarkers. 
Discriminant models were developed with partial least 
squares discriminant analysis (PLS-DA) using the 
full dataset, the randomly balanced dataset (random-
downsampling-PLS-DA), or the optimized balanced 
dataset (KennardStone-downsampling-PLS-DA). 
Thresholds to discriminate low and high values came 
from the literature, 200 µmol/L for BHB (Denis-Rob-
ichaud et al., 2014), 150 mmol/L for acetone (de Roos 
et al., 2007), 4.3 unit/L for LDH (Chagunda et al., 
2006), 5 ng/mL for progesterone (Roelofs et al., 2006), 
or from personal communication for NAGase (8 unit/L; 
Torben Larsen, Aarhus University, Tjele, Denmark, 
personal communication). No threshold could be found 
for 3 biomarkers of energy deficit, isocitrate, free glu-
cose, and glucose-6P; therefore, discriminant values for 
feed restrictions were visually estimated from published 
data; 0.15 mmol/L for isocitrate (Pires et al., 2022), 
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Figure 1. Schematic representation of the modification of biomark-
er distribution using the Kennard-Stone algorithm to sub-datasets. 
Samples in red are selected to constitute the calibration dataset.
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0.25 mmol/L for free glucose (Pires et al., 2022), and 
0.3 mmol/L for glucose-6P (Billa et al., 2020).

The models were evaluated using the external herd 
validation set. When a logarithmic transformation was 
used, predictions were back-transformed (10prediction) to 
further evaluate model performance in a usual scale and 
for graphical representation. Model statistics, both in 
the calibration and validation steps, were expressed in 
terms of R2 (coefficient of determination) and RMSE. 
Ratio of RMSE/standard deviation of global dataset 
(RPD) was not calculated as being not relevant for 
models with asymmetric distribution, for which stan-
dard deviation does not correctly describe the spread 
of the population (Bellon-Maurel et al., 2010). As a last 
step, final models were developed using all the data, 
calibration and validation, and internal cross-validation 
R2cv and RMSEcv (10 subsets constituted by cyclic 
iteration) are shown. Discriminant model statistics 
were expressed in terms of sensitivity (percentage of 
good classification in the high content group), specific-
ity (percentage of good classification in the low content 
group), and global accuracy (global percentage of cor-
rect classification). Computations and models were car-
ried out with programs developed in Matlab 2022 (The 
Mathworks Inc., Natick, MA) and the PLS toolbox v. 
8.5.1 (Eigenvector Research Inc., Wenatchee, WA).

RESULTS AND DISCUSSION

Descriptive Statistics of Reference Values

Descriptive statistics are shown in Table 3. The mean 
value for each biomarker was in the same order of mag-
nitude as in previous studies, for example, means of 
0.179 mmol/L isocitrate (Larsen, 2014), 9.04 mmol/L 
citrate (Grelet et al., 2016), 0.081 mmol/L glucose-6P 
and 0.331 mmol/L free glucose (Larsen and Moyes, 
2015), 146 µmol/L BHB (de Roos et al., 2007), and 
0.100 mmol/L acetone (Denis-Robichaud et al., 2014), 
2.7 unit/L NAGase and 2.4 unit/L LDH (Åkerstedt 
et al., 2011), and progesterone between 0.8 and 22.8 

ng/mL (Ginther et al., 1976). However, it should be 
noted that glucose-6P is higher than in the above 
referenced study (+33%), whereas BHB, acetone, and 
NAGase are considerably lower (−62%, −47%, and 
−41%, respectively). This could be explained by the 
over-representation of healthy cows in our dataset, 
as most of the sampling did not focus on comparing 
healthy and sick cows, or by minor differences in the 
analytical process. Table 3 also shows that both ketosis 
(BHB and acetone) and mastitis biomarkers (NAGase 
and LDH) have asymmetric distributions with strong 
positive skewness. Figure 2 shows the distribution of 
each molecule according to sampling countries. It also 
particularly highlights the positive skewness of distri-
bution of ketosis and mastitis biomarkers and their 
exponential increase in case of disorder.

The Pearson correlation table between biomarkers is 
shown in Table 4. As different projects analyzed differ-
ent biomarkers, not all the correlations could be calcu-
lated. Isocitrate is derived from citrate during the Krebs 
cycle and both molecules were found to be positively 
correlated in Larsen (2014). Citrate decreases with the 
increase of de novo fatty acid synthesis (Garnsworthy 
et al., 2006) and is mentioned as an early indicator of 
physiological imbalance of the animal (Bjerre-Harpøth 
et al., 2012). In the current dataset the correlation 
coefficients (r) between isocitrate and citrate could 
not be calculated, but both are weakly to moderately 
positively correlated with BHB (r = 0.24 and r = 0.45 
for isocitrate and citrate, respectively). This moderate 
correlation with BHB may reflect that they are also as-
sociated with physiological imbalance but at a different 
degree of severity. A decrease of citrate has also been 
observed in case of mastitis (Hyvönen et al., 2010); how-
ever, in the present study a weak positive correlation 
was observed between isocitrate and NAGase and LDH, 
both of which increase in cases of mastitis. Glucose is 
not synthetized in the mammary epithelial cells and is 
therefore directly dependent on blood glucose absorbed 
in the mammary gland (Larsen and Moyes, 2015). Free 
glucose was negatively correlated with both glucose-6P 
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Table 3. Descriptive statistics of the chemical analysis results for the 9 biomarkers1

Item Minimum Maximum Mean SD Skewness

Isocitrate (mmol/L) 0.016 0.447 0.156 0.053 0.86
Citrate (mmol/L) 3.88 16.12 8.90 2.19 0.33
Glucose-6P (mmol/L) 0.001 0.808 0.121 0.075 1.52
Free glucose (mmol/L) 0.001 0.998 0.284 0.120 0.62
BHB (µmol/L) 20 1,989 90 102 5.88
Acetone (mmol/L) 0.005 3.355 0.070 0.148 11.49
NAGase (unit/L) 0.00 25.10 1.91 1.61 4.52
LDH (unit/L) 0.00 45.96 2.53 2.70 5.99
Progesterone (ng/mL) 0.50 22.44 5.28 2.76 1.21
1Glucose-6P = glucose-6 phosphate; NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
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and isocitrate as observed by Pires et al. (2022). Free 
glucose is positively correlated with plasma glucose and 
milk lactose, and decreases in case of energy deficit 
(Larsen and Moyes, 2015; Pires et al., 2022). On the 
contrary, glucose-6P is negatively correlated with milk 
lactose and increases in case of energy deficit, probably 
due its role in the pentose phosphate cycle and as an in-
termediate in glycolysis (Larsen and Moyes, 2015; Pires 
et al., 2022). The 2 molecules were not correlated with 
BHB, reflecting their complementarity. Low glucose 

level associated with high BHB indicates an imbalanced 
cow, whereas high BHB associated with normal glucose 
may be associated with a false ketosis diagnostic. Both 
glucose-6P and free glucose were moderately correlated 
with NAGase and LDH, which is probably explained by 
the damaging effect of mastitis on mammary epithelial 
cells. The 2 biomarkers of ketosis (BHB and acetone) 
were strongly correlated, with an r = 0.69. A similar re-
lationship (r = 0.71) was observed between the mastitis 
biomarkers NAGase and LDH.
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Figure 2. Distribution of each biomarker according to the sampling country. NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate de-
hydrogenase.
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Quantitative MIR Models

Table 5 shows the performance of the 4 different 
modeling methodologies with the 9 biomarkers during 
the calibration step with 80% of herds. The results are 
shown in terms of calibration RMSE (RMSEc) and 
coefficient of determination (R2c). The 3 alternative 
methodologies to PLS seemed to outperform PLS for 
most of biomarkers. The PLS-random-downsampling 
provided the best results for acetone, PLS-Kennard-
Stone-downsampling the best results for isocitrate 
and progesterone, whereas SVM-R the best results for 
citrate, glucose-6P, free glucose, BHB, NAGase, and 
LDH, suggesting a better ability to take into account 
the specificities of the distributions. However, as the 
distribution is modified in PLS-random-downsampling 
and PLS-KennardStone-downsampling, the RMSEc is 

artificially inflated due to the elimination of low values, 
which are better predicted than high values. Alterna-
tively, removing low samples inflates the R2, which is 
directly affected by a better distribution over the range 
(Davies and Fearn, 2006). Finally, in the calibration 
step some methodologies may overfit the hyperparam-
eters to this particular dataset. Therefore, the calibra-
tion statistics does not allow to compare the methods 
on a common basis and the results should be considered 
with caution and in an informative way. Consequently, 
for the selection of the best model, the external valida-
tion statistics are to be considered only.

Table 6 shows the performance of models in external 
herd validation, by applying the models to the 25% 
excluded herds across countries. Looking at the R2v 
and RMSEv, the best models in calibration were not 
necessarily the best in the validation step. Indeed, 
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Table 4. Correlation between the reference measurement of biomarkers1

Item
Isocitrate 
(mmol/L)

Citrate 
(mmol/L)

Glucose-6P 
(mmol/L)

Free glucose 
(mmol/L)

BHB
(µmol/L)

NAGase
(unit/L)

LDH
(unit/L)

Isocitrate (mmol/L)              
Citrate (mmol/L)              
Glucose-6P (mmol/L) 0.41***            
Free glucose (mmol/L) −0.31***   −0.44***        
BHB (µmol/L) 0.24*** 0.45*** −0.01NS −0.15***      
Acetone (mmol/L)   0.39***     0.69***    
NAGase (unit/L) 0.22***   0.40*** −0.30*** 0.09***    
LDH (unit/L) 0.18***   0.39*** −0.31*** 0.03* 0.71***  
Progesterone (ng/mL) −0.26***   −0.22*** 0.19*** −0.05* −0.16*** −0.20***
1Glucose-6P = glucose-6 phosphate; NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
NS: P ≥ 0.05; *P ≤ 0.05; ***P ≤ 0.001. 

Table 5. Calibration performance of mid-infrared models1

Calibration 80% 
herds n #LV

R2c

 

RMSEc

PLS
PLS random- 
downsampling

PLS 
KennardStone- 
downsampling SVM-R PLS

PLS random- 
downsampling

PLS 
KennardStone- 
downsampling SVM-R

Isocitrate  
  (mmol/L)

4,211 13 0.49 0.53 0.53 0.52   0.037 0.045 0.060 0.036

Citrate (mmol/L) 520 8 0.87 0.86 0.87 0.91   0.777 0.874 0.950 0.661
Glucose-6P  
  (mmol/L)

4,200 11 0.59 0.64 0.51 0.73   0.047 0.064 0.084 0.044

Free glucose  
  (mmol/L)

4,324 12 0.42 0.48 0.53 0.56   0.091 0.108 0.110 0.080

BHB (µmol/L) 5,794 14 0.40 0.60 0.50 0.72   77.0 134.2 173.0 55.6
Acetone  
  (mmol/L)

1,671 13 0.37 0.82 0.68 0.61   0.120 0.198 0.284 0.097

NAGase (unit/L) 4,204 13 0.38 0.43 0.35 0.56   1.31 2.42 2.34 1.08
LDH (unit/L) 4,203 13 0.33 0.28 0.27 0.43   2.37 5.25 4.71 2.23
Progesterone  
  (ng/mL)

1,640 8 0.14 0.25 0.28 0.18   2.50 2.95 3.12 2.44

1Calibration step is performed with 80% of herds among countries (no outliers were removed). Distributions of biomarkers were modified in 
PLS-random-downsampling and PLS-KennardStone-downsampling, which affect both RMSEc and R2c. R2c = coefficient of determination in 
calibration; RMSEc = root mean square error of calibration; n = number of samples in calibration; #LV = number of latent variables in PLS 
models; PLS = partial least squares regression; SVM-R = support vector machine regression; glucose-6P = glucose-6 phosphate; NAGase = 
N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
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PLS provided the best results for isocitrate, glucose-
6P, free glucose, and LDH. The SVM-R provided the 
best results for citrate, BHB, acetone, NAGase, and 
progesterone. The PLS-random-downsampling and 
PLS-KennardStone-downsampling provided better re-
sults than PLS for some biomarkers (glucose-6P, BHB, 
acetone, LDH, and progesterone for PLS-random-
downsampling and BHB, acetone, and progesterone for 
PLS-KennardStone-downsampling). These molecules 
were the ones with highly skewed distributions. How-
ever, for these molecules, the best models were obtained 
using SVM-R. Therefore, although these 2 methodolo-
gies might provide some improvement compared with 
PLS, SVM-R seems to be the best strategy to take 
into account nonlinearity (i.e., the exponential increase 
of minor molecules not associated with exponential 
changes in the main components). Therefore, with the 
current dataset, it is worth using a method adapted 
to nonlinearity rather than modifying the distribution 
to approach normality. Additionally, SVM-R provides 
better results with the entire dataset than when as-
sociated with modification of distribution (results not 
shown), which enables keeping all the variability of the 
calibration dataset and provides a higher robustness 
to the models, leading to better results in the external 
validation. Therefore, classical PLS and SVM-R based 
on the full dataset provided the best results for the 
normal and skewed distributions, respectively. The re-
sults also indicate that retaining the full variability of 
the calibration dataset increases the robustness of the 
model and the quality of predictions when applied to 
external data. This demonstrates the benefits of ex-
panding datasets through collaborations.

As a final step, the calibration and validation da-
tasets were merged to develop final models across the 
entire dataset, covering a maximum of variability. 

These final models were developed with the best meth-
odologies highlighted for each molecule during the herd 
validation step (i.e., PLS for isocitrate, glucose-6P, free 
glucose, and LDH and SVM-R for citrate, BHB, ac-
etone, NAGase, and progesterone). These models could 
only be validated in cross-validation, with 10 subsets 
constituted by cyclic iteration. Figure 3 shows these 
final models, with measured versus predicted values. 
Energy balance biomarkers were predicted with R2cv 
of 0.50, 0.88, 0.59, and 0.40 and RMSEcv of 0.037, 
0.76, 0.048, and 0.093 mmol/L for isocitrate, citrate, 
glucose-6P, and free glucose, respectively. Biomarkers 
of ketosis were predicted with R2cv of 0.61 and 0.60, 
and RMSEcv of 64.6 µmol/L and 0.094 mmol/L for 
BHB and acetone, respectively, which is comparable to 
results obtained by de Roos et al. (2007), with RMSE 
of 65 µmol/L and 0.070 mmol/L for BHB and acetone 
and shows a lower error than obtained by Heuer et al. 
(2001), with an error of 0.210 mmol for acetone. Mas-
titis biomarkers were predicted with R2cv of 0.42 and 
0.29, and RMSEcv of 1.23 and 2.28 unit/L for NAGase 
and LDH, respectively. Finally, progesterone as an in-
dicator of the reproductive status of dairy cows was 
predicted with a R2cv of 0.13 and a RMSEcv of 2.57 
ng/mL, which is not surprising knowing that mean pro-
gesterone was approximately 5 ppb in milk, and that 
other changes associated with fertility status in milk 
composition are probably insignificant compared with 
the detection threshold of 100 ppm with MIR in milk.

Regarding the possibility of using MIR to predict 
biomarkers of energy balance, citrate was very well pre-
dicted, with a R2v of 0.94 and a relative error lower than 
10%, which means that accurate quantitative screening 
can be considered with this model. The glucose-6P 
model shows a R2v of 0.58 but a very high relative er-
ror (RMSE/mean) of 41%, indicating that the model is 
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Table 6. Validation performance of mid-infrared models with external validation performed by removing 20% of the herds among countries to 
be used as the validation set1

External 25% herds 
validation n

R2v

 

RMSEv

PLS
PLS random- 
downsampling

PLS 
KennardStone- 
downsampling SVM-R PLS

PLS random- 
downsampling

PLS 
KennardStone- 
downsampling SVM-R

Isocitrate (mmol/L) 1,292 0.48 0.42 0.42 0.44   0.04 0.04 0.04 0.04
Citrate (mmol/L) 80 0.91 0.88 0.88 0.94   0.70 0.84 0.92 0.59
Glucose-6P (mmol/L) 1,288 0.58 0.59 0.49 0.49   0.05 0.07 0.07 0.06
Free glucose (mmol/L) 1,152 0.28 0.28 0.25 0.26   0.11 0.10 0.11 0.11
BHB (µmol/L) 1,372 0.37 0.48 0.42 0.58   90.83 85.03 100.92 76.50
Acetone (mmol/L) 325 0.49 0.66 0.61 0.76   0.10 0.12 0.08 0.07
NAGase (unit/L) 1,292 0.38 0.35 0.31 0.68   1.25 2.03 1.92 0.81
LDH (unit/L) 1,291 0.24 0.25 0.20 0.20   1.93 2.98 2.60 1.93
Progesterone (ng/mL) 337 0.13 0.15 0.15 0.15   2.81 3.12 2.97 2.81
1Bold R2v and RMSEv highlight the best modeling method. R2v = coefficient of determination in external herd validation; RMSEv = root mean 
square error of external herd validation; n = number of samples in validation; PLS = partial least squares regression; SVM-R = support vector 
machine regression. Glucose-6P = glucose-6 phosphate; NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
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very inaccurate and should only be considered to detect 
extreme values (Grelet et al., 2021). Therefore, it is 
more reliable to focus on citrate predictions to obtain 
information on cow status. It is recommended not to 
use isocitrate and free glucose prediction models, due 
to low R2v of 0.48 and 0.28, respectively.

Regarding biomarkers of ketosis, BHB models have 
similar performances in cross-validation and valida-

tion, whereas the final acetone model shows a R2cv of 
0.6, which is lower than the R2 in external validation 
(0.76). Therefore, the R2v is probably too optimistic, 
due to the random exclusion of herds that were likely 
well predicted in the validation dataset, and it seems 
more relevant to consider the R2cv (0.6) as a quality 
indicator of the acetone model. Therefore, BHB and 
acetone models show similar performances, with both 
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Figure 3. Cross-validation performances of the final models developed on the full datasets. Plots showing measured biomarkers versus pre-
dicted biomarkers in the 10-fold cross-validation. The final models were developed with the best methodologies highlighted for each molecule 
during the herd validation step (i.e., partial least squares regression for isocitrate, glucose-6P, free glucose, and LDH and SVM-R for citrate, 
BHB, acetone, NAGase, and progesterone). RMSEc = root mean square error of calibration; RMSEcv = root mean square error of 10-fold cross-
validation; R2cal = coefficient of determination of the calibration; R2cv = coefficient of determination of 10-fold cross-validation; NAGase = 
N-acetyl-β-d-glucosaminidase; glucose-6P = glucose-6 phosphate; LDH = lactate dehydrogenase; SVM-R = support vector machines regression.
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a R2v or R2cv of approximately 0.6 and a very large 
relative RMSE. This performance is similar to previous 
findings (Grelet et al., 2016) and confirms that these 
models should be used with caution due to their high 
inaccuracy, and can only be used to detect extreme val-
ues. This is nevertheless potentially sufficient to detect 
cows suffering from subclinical and clinical ketosis. In 
the case where BHB and acetone information would 
be redundant in practical use, it is recommended to 
focus on BHB as it is based on 7,166 records compared 
with 1,999 for acetone. This large number, which is 
associated with a better coverage of countries and lo-
cal conditions, should bring a better robustness to the 
model by limiting extrapolation to unknown conditions 
when using with real field data as shown in Grelet et al. 
(2021). Furthermore, the inconsistency between valida-
tion results and cross-validation based on the whole 
dataset shows that the acetone model is dependent on 
a few extreme high points, indicating that the model is 
not yet sufficiently robust.

Regarding mastitis biomarker models, as for acetone, 
the NAGase R2v is probably too optimistic, due to the 
random exclusion of herds that were likely well pre-
dicted in the validation dataset. The NAGase model 
shows a more realistic R2 in cross-validation than in 
validation, and R2cv should be considered rather than 
R2v. The NAGase is predicted with a R2cv of 0.42 and 
a high relative error (42%), which is not precise enough 
to be used for individual cow monitoring. Performance 
of the LDH model, with R2v of 0.24 and a high rela-
tive error (76%), is also too low to be considered for 
use. Finally, the progesterone prediction model, with 
an extremely low R2v (0.15) and a high relative error 
(53%), cannot be used for cow management.

Qualitative MIR Models

When the ability of MIR to predict biomarkers was 
too low to enable approximate quantitative screen-
ing (R2cv < 0.74; Grelet et al., 2021), a qualitative 

methodology was tested to assess the possibility of 
discriminating low versus high values for all biomark-
ers except citrate. Discriminant models were developed 
using different methodologies associating PLS-DA and 
under-sampling or not. The best results obtained dur-
ing the external herd validation are shown in Table 
7. The PLS-DA on the full dataset provided the best 
classification results for isocitrate, free glucose, ac-
etone, and progesterone, whereas PLS-DA associated 
with random under-sampling provided the best results 
for BHB and LDH, and PLS-DA associated with Ken-
nardStone under-sampling provided the best results for 
glucose-6P and NAGase. The lack of consistency in the 
best methodology for both normally distributed and 
skewed molecules shows that no general conclusions can 
be drawn and that different methodologies should be 
tested for each biomarker. The results also show that 
under-sampling methods can be useful to balance the 
dataset before discrimination. Three biomarkers were 
predicted with a very high percentage of correct clas-
sification, with global accuracy around 90% for BHB, 
acetone, and NAGase. This validates that MIR spec-
trometry can discriminate high and low values of BHB 
and acetone. It also indicates that, unlike quantitative 
models, qualitative discriminant models can discrimi-
nate low and high NAGase contents with good accuracy, 
which could help in the management and detection of 
mastitis. Glucose-6P is predicted with a global accu-
racy of 83%. The added value of such accuracy needs 
to be tested in the field to evaluate a potential use of 
this model. Furthermore, Billa et al. (2020) mentioned 
a breed effect on glucose-6P that should be taken into 
account in the use of raw predictions. Accuracy of other 
models was less than 75%; therefore, it seems difficult 
to consider their use for herd management.

Perspectives and Limitations

The objectives of this study were (1) to evaluate the 
potential of MIR milk spectra to predict key biomark-
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Table 7. External herd validation results of the qualitative discrimination between low and high values for 8 biomarkers1

Biomarker   Best method Threshold Sensitivity (%) Specificity (%) Accuracy (%)

Isocitrate   PLS-DA 0.150 mmol/L 84 60 75
Glucose-6P   KennardStone-downsampling-PLS-DA 0.3 mmol/L 83 83 83
Free glucose   PLS-DA 0.250 mmol/L 81 57 67
BHB   Random-downsampling-PLS-DA 200 µmol/L 88 92 92
Acetone   PLS-DA 0.15 mmol/L 81 91 91
NAGase   KennardStone-downsampling-PLS-DA 8 unit/L 85 88 88
LDH   Random-downsampling-PLS-DA 4.3 unit/L 75 69 70
Progesterone   PLS-DA 5 ng/mL 49 65 56
1Only the best methodology among PLS-DA, random-downsampling-PLS-DA, and KennardStone-downsampling-PLS-DA is shown. PLS-DA 
= partial least square discriminant analysis; glucose-6P = glucose-6 phosphate; NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate de-
hydrogenase.
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ers of energy deficit (citrate, isocitrate, glucose-6P, free 
glucose), ketosis (BHB and acetone), mastitis (NAGase 
and LDH), and fertility (progesterone); (2) to test al-
ternative methodologies to PLS to better account for 
the specific asymmetric distribution of biomarkers; and 
(3) to create robust models by merging large datasets 
from international or national projects.

Milk citrate is predicted with sufficient accuracy to 
allow accurate quantitative screening of energy deficit 
of cows. Quantitative and qualitative models predicting 
BHB and acetone are able to discriminate high from low 
values, which seems sufficient to detect cows suffering 
from subclinical ketosis. The qualitative discriminant 
model predicting NAGase, showing a global accuracy 
of 88% of correct classification, also demonstrates an 
ability to discriminate high from low values. It could 
play a role in the detection of mastitis, especially if flow 
cytometry is not available to provide SCC information 
(e.g., if in the future MIR instruments are miniaturized 
to be placed in farms). Models predicting progester-
one were not good enough to contribute to cow fertil-
ity monitoring. However, mastitis, energy deficit, and 
metabolic disease are all major causes of subfertility 
in dairy cows, so their detection in early lactation will 
help to predict future fertility issues (Wathes, 2012; 
Lou et al., 2022). Consequently, MIR spectrometry can 
provide valuable information in relation to 4 main fac-
tors leading to involuntary culling of dairy cows (De 
Vries and Marcondes, 2020; Dallago et al., 2021). Previ-
ous versions of the citrate, BHB, and acetone models 
(Grelet et al., 2016) were already routinely used in 
the framework of milk recording in several European 
countries, but contained only a few hundred samples. 
The 3 updated quantitative models should increase the 
quality of predictions due to the increased variability in 
the calibration datasets, which has been facilitated by 
the international collaboration.

However, the predicted raw values should not be con-
sidered as an end in themselves. Biomarker concentra-
tion may be highly dependent on DIM, parity, breed, 
and potentially other variables. Therefore, their use 
and the way information is disseminated at the farm 
level must take these important aspects into account. 
For example, assessing the dynamics of biomarkers 
throughout the lactation stage, or comparing with ani-
mals of similar characteristics, may be more appropri-
ate than using the predicted raw value. These predicted 
biomarkers also come in addition to the wide range of 
already existing parameters, and their complementar-
ity, or marginal effect, should be considered. In particu-
lar, the possibility to predict NAGase content on such 
a large scale is rather new, and its complementarity 
with the SCC, as well as its added values, should be 
investigated. For ketosis, energy deficit biomarkers re-

flecting plasma glucose may be highly complementary 
to ketosis biomarkers. Indeed, their combination may 
enable to screen cow with low glucose and high ketone 
bodies, which are the critical cases of ketosis to detect 
(Moyes et al., 2013; Foldager et al., 2020).

In terms of modeling methodologies, the results show 
that it is worth using methods adapted to nonlinear-
ity rather than trying to modify the distribution to 
approach normality. In the present work, SVM-R has 
particularly shown good performances for skewed dis-
tributions. However, this method based on a higher 
dimension space and numerous hyperparameters to 
tune is extremely time consuming to calculate. Work-
ing with an elevated number of samples (e.g., several 
thousand samples) especially increases calculation time 
as the matrix dimension reduction is performed with 
XX′ (dimension n samples × n samples) instead of X′X 
(dimension p absorbances × p absorbances). Therefore, 
not all the potential algorithms and optimizations 
could be tested and further investigations, requiring 
higher computation power, may enable accuracy of 
current results to be improved. Additionally, not all the 
external herd validation combinations could be tested, 
which would be necessary to have a stable estimation of 
external herd validation performances. The SVM-R is 
only one of the many methods adapted to nonlinearity, 
and future research should investigate the potential of 
other algorithms such as neural networks, kernel meth-
ods, or weighted regressions.

In addition to herd management, predicted biomark-
ers can be valuable for genetic evaluations as proxies 
of dairy cow challenges. McParland et al. (2015) and 
Bonfatti et al. (2017) mentioned that models predicting 
phenotypes with low accuracy may successfully contrib-
ute in making genetic progress if genetic correlations 
exist with other traits of interest (e.g., direct health 
traits).

CONCLUSIONS

Thanks to international collaborations, the working 
dataset consisted of a total of 9,143 records. Partial 
least squares and SVM-R based on the full dataset 
provided the best results for normal and skewed distri-
butions, respectively. Regarding the ability of MIR to 
predict biomarkers of energy balance, citrate was very 
well predicted, which allowed for quantitative screening. 
Qualitative models indicate that MIR spectrometry can 
discriminate low and high values of BHB and acetone, 
as biomarkers of ketosis, with accuracy around 90%. A 
qualitative discriminant model can discriminate low and 
high NAGase contents with good accuracy (88% good 
classification), which could help in mastitis management 
and detection, especially if SCC through flow cytometry 
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is not available (e.g., in farm measurements). Finally, 
progesterone could not be predicted with sufficient ac-
curacy to be further considered. Further investigations 
are needed, especially to evaluate the performances 
of models when used in routine with real field data. 
Consequently, MIR spectrometry can provide valuable 
information on energy deficit, ketosis, and mastitis in 
dairy cows, all of which influence fertility.
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