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Abstract

The t-distributed stochastic neighbour embedding algorithm or t-SNE is a non-

linear dimension reduction method used to visualise multivariate data. It

enables a high-dimensional dataset, such as a set of infrared spectra, to be rep-

resented on a single, typically two-dimensional graph, revealing its global and

local structure. t-SNE is very popular in the machine learning community and

has been applied in many fields, generally with the aim of visualising large

datasets. In vibrational spectroscopy, t-SNE is gaining notoriety but principal

component analysis (PCA) remains by far the reference method for exploratory

analysis and dimension reduction. However, t-SNE may represent a real aid in

the analysis of vibrational spectroscopic datasets. It provides an at-a-glance

global view of the dataset allowing to distinguish the main factors influencing

the spectral signal and the hierarchy between these factors, and gives an indi-

cation on the possibility of performing predictive modelling. It can also provide

great support in the choice of the pre-processing, by comparing rapidly differ-

ent general pre-processing approaches according to their effect on the variable

of interest. Here we propose to illustrate these advantages using different

datasets. We also propose an approach based on a synergy between the t-SNE

and PCA methods, allowing respective advantages of each to be exploited.
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1 | INTRODUCTION

The t-distributed stochastic neighbour embedding or t-SNE algorithm1–3 is a nonlinear dimensionality reduction tech-
nique used to visualise high-dimensional data. It works by constructing a probability distribution that measures the
similarity between pairs of high-dimensional data points. Then, it optimises a lower-dimensional representation, aiming
to minimise the divergence between the original and transformed distributions, effectively mapping the data points to a
lower-dimensional space. t-SNE is able to reveal the organisation of the dataset locally and more globally. For instance,
as not all the variation can be mapped in the lower dimension, a user-adjustable parameter called perplexity allows the
algorithm to balance the preservation of local and global structures. t-SNE is commonly used to explore and visualise
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complex datasets, revealing patterns, relationships and clusters that may not be easily discernible in the original high-
dimensional space.

t-SNE is popular in a wide variety of disciplines. It has been used in different types of multivariate data to, among
other things, process natural language,4 aid in tumour identification,5 explore patterns in music,6 interpret geological
data,7,8 better understand ancient Egyptian paintings9 or compare medical treatments.10 In transcriptomics, t-SNE is
considered as a cornerstone for the exploration and interpretation of single-cell RNA sequencing datasets.3,11 In vibra-
tional spectroscopy, however, according to our experience, the popularity of t-SNE remains limited. t-SNE was used, for
example, to explore the patterns in a dataset of Vis-NIR hyperspectral images of different paper types,12 to reduce the
dimension of Near-InfraRed (NIR) datasets of agri-food products before applying a classification method,13 to differenti-
ate specific human cells measured by infrared microscopy and subjected to different treatments,10 to verify the feasibil-
ity of using NIR Spectroscopy (NIRS) to assess chemical oxygen demand in water systems14 or to evaluate the
significance of the spectral difference between tea categories.15

t-SNE is a versatile method and is not dedicated to a single use. It was first proposed as a pure visualisation
method,1 that is, a visual aid in exploratory data analysis. Used as a preliminary step, it can help identifying relation-
ships between the data matrix and other quantitative or categorical variables and even show the hierarchy of impor-
tance of these variables. It can therefore provide a first indication of the feasibility of further predicting these variables
from the data matrix using regression or classification modelling techniques.14–17 The strong dimensionality reduction
capability of t-SNE can also help to explore the relationships between the original variables. For example, Linderman
et al.11 implemented a heatmap-style visualisation for scRNA-seq based on one-dimensional t-SNE for simultaneously
visualise the expression patterns of thousands of genes. But t-SNE can also be used to visualise and explore the predic-
tive model itself. For example, Hajibabaee et al.18 applied different binary classification methods on t-SNE scores
instead of the original dataset to represent decision surfaces and assess the effect of class imbalance in these models.
Hoyt & Owen19 used t-SNE to inspect different layers of a convolutional neural network, revealing the importance of
each layer and how relevant non-linear information was captured in the features. Going a step further, attempts have
also been made to use t-SNE as part of the predictive workflow itself. Poličar et al.20 developed a method for embedding
new samples into the t-SNE map constructed with reference samples, allowing them to be assigned a class. Shekhar
et al.21 successfully combined t-SNE with density-based partitioning to identify cell subpopulations from high-
dimensional mass cytometry data. Regarding theoretical aspects, Linderman and Steinerberger22 showed that t-SNE is
often able to recover well-separated clusters and, under specific parameter constraints, is equivalent to spectral cluster-
ing, making it a legitimate method for partitioning.

In this paper, we propose to illustrate the opportunities and benefits of using t-SNE for the analysis of vibrational
spectroscopic data. We present examples based on two datasets, one dataset of pesticide samples measured by Raman
microscopy and one dataset of pure and adulterated oregano samples originating from two countries and measured by
NIRS. Sometimes, the dominant factor(s) influencing the position of the points on the t-SNE map is (are) not the one(s)
of interest to the analyst. This is the case, for example, when the objective is to determine the composition of a product
and important batch effects are present, which may mask or make it difficult to observe the effect of the relevant fac-
tors. To address this issue, we also propose an approach that combines t-SNE and principal component analysis (PCA).

2 | MATERIAL AND METHODS

2.1 | t-SNE

Here we propose a brief theoretical summary of t-SNE. For a more complete description of the original algorithm and
two faster variants, we refer to the original articles.1,11,23 The method is also summarised in Figure 1. t-SNE has been
implemented in different languages and software's.24,25 The script combining PCA and t-SNE is available on request
from the authors of this article.

Given a set of N objects represented in a high-dimensional space by the data points x1,…,xN , t-SNE creates a low-
dimensional space, called the t-SNE map, where each data point xi is represented by its low-dimensional counterpart
yi. In both spaces, a measure of similarity having the form of a mathematical probability is defined for each pair of data
points. In order for the t-SNE map to represent as faithfully as possible the similarities between objects and thus the
local and global structures of the dataset, the Kullback–Leibler (KL) divergence between the measures of similarity in
the two spaces is minimised.
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In the high-dimensional space, the similarities between objects are first obtained by converting the Euclidean dis-
tances between data-points into conditional probabilities. In essence, the conditional probability pjji represents the like-
lihood that the ith object would choose the jth object as its neighbour in the low-dimensional space, assuming that
neighbours are selected in proportion to their probability density. The conditional probability pjji is characterised by a
Gaussian distribution centred at xi.

pjji ¼
e� xi�xjk k2

=2σ2iP
k ≠ ie

� xi�xkk k2=2σ2k

where, for each xi, the variance of the Gaussian, σi, is automatically adjusted to ensure that

2
�
P

j
pjjilog2pjji ¼ P

where the term at the left side of the equal sign represents the so-called perplexity and can be interpreted as an approxi-
mate measure of the effective number of neighbours while, on the right side, the perplexity value P is a scalar hyper-
parameter fixed by the user. t-SNE further incorporates a symmetrisation of the conditional probabilities by defining
the probabilities pij as

pij ¼
pjjiþpijj

2N

In the low-dimensional space, a measure of similarity is also defined for each pair of data points, but this time using
a naturally symmetric probability, based on the Student's t distribution with one degree of freedom, also called Cauchy
distribution

qij ¼
1þ yi�yj

��� ���2
� ��1

P
k≠ l 1þ yk�ylk k2� ��1

FIGURE 1 General outline of t-distributed stochastic neighbour embedding (t-SNE). Pairwise probability distributions are defined to

represent, on the one hand, the similarity between the spectra in the high dimensional space and, on the other hand, the proximity between

points in the low dimensional space. Then, gradient-descent optimization is performed to find a solution Y that maximises the resemblance,

that is, minimises the Kullback–Leibler divergence between p and q.
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with yi the coordinates of object i in the low-dimensional map. The use of this distribution with its very slowly decaying
tail allows some flexibility in how large distances between data points in the high dimensional space are represented in
the low-dimensional space.

Starting from random values, the t-SNE algorithm searches for the optimal values of the yi, the configuration of data
points in the low-dimensional map, by minimising C, the Kullback-Leibler divergence between the joint probability dis-
tribution, P, in the high-dimensional space and the joint probability distribution, Q, in the low-dimensional space

C¼KL P Qj Þð ¼
X

i

X
j
pijlog

pij
qij

The algorithm converges towards a minimum (typically a local minimum) with a gradient descent procedure. Vari-
ous tricks are used to obtain better quality solutions or to accelerate the convergence such as the ‘early compression’,
the ‘early exaggeration’, the Barnes–Hut algorithm,23 the FFT-accelerated Interpolation-based t-SNE or Fit-SNE11 or
the use of parallel or GPU-based computation schemes.26

2.2 | Datasets

In this study, two datasets were used to illustrate the applications and advantages of t-SNE. The dataset PESTICIDE
consists of the 467 Raman spectra of pesticides of nine different formulations. Raman spectra were acquired with a
Confocal Raman Microscope Senterra II spectrometer (Bruker Optics, Ettlingen, Germany) with a 100 mW, 785-nm
diode laser and a thermoelectrically cooled CCD detector, operating at �65�C. For spectra collection, the products were
first sprayed on the skin of organic apples. A swab previously soaked in a mixture of acetone and water (20/80) was
used to retrieve the product directly from the apple. The product was then spread into a single aluminium plate, which
was air dried during 10 min at room temperature (20�C). For each sample at least 20 spectra were acquired with an
integration time of 10 s and 5 co-additions. Raman intensity was recorded between 50 and 3650 cm�1 with a spectral
resolution of 4 cm�1. The OPUS 7.8 Software (Bruker Optics, Ettlingen, Germany) was used for spectral data
acquisition.

The dataset OREGANO is a database of NIR spectra of pure and adulterated oregano.27 The experimental design
consisted in measuring oregano samples originating from two different countries (one batch by country), pure or adul-
terated with four different products at five adulteration levels, with three replicates for each combination of factors.
This results in a total of 126 spectra. The countries are Italy and Turkey, the levels of adulteration are 1%, 2%, 5%, 25%
and 50% and the adulterants are olive leaves, cistus leaves, myrtle or sumac. The absorbance was measured with a FOSS
XDS NIR Spectrometer (FOSS Analytics, Denmark) at every 2 nm between 400 and 2500 nm.

FIGURE 2 t-distributed stochastic neighbour embedding (t-SNE) coordinates for the PESTICIDE dataset using a perplexity of 25 and

1D-SNV pre-processing. Colour and symbol both represent the pesticide formula.
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2.3 | Advantages and application of t-SNE in vibrational spectroscopy

In vibrational spectroscopy, PCA is the reference method for multivariate data exploration. However, t-SNE has signifi-
cant advantages over PCA. While PCA is a linear method, t-SNE is also able to capture non-linear relationships and
complex structures in the data, making it more suitable for visualising intricate patterns. t-SNE also preserves the local
structure and clustering of data points, whereas PCA focuses on capturing global variances. Therefore, with PCA,
local fine-grained relationships can be overlooked and, in addition, outliers can significantly impact the principal com-
ponents and distort the resulting representation. Nevertheless, the most obvious advantage of t-SNE is the possibility to
summarise and represent most of the relevant data variation and structure in a single graph, whereas a rigorous explo-
ration of the data with PCA would require the inspection of a large number of score plots, and therefore much
more time.

FIGURE 3 Scatterplots of the PCA scores of selected PCs, for the PESTICIDE dataset using a perplexity of 25 and 1D-SNV pre-

processing. (A) The scores of PC1 and PC2 indicate that tebuconazole can be well discriminated from all other pesticides, except

difenoconazole for which the separation of data points is not perfect. (B) The scores of PC3 and PC4 indicate that difenoconazole, mancozeb

and thiabendazole can all be well discriminated from other pesticides. (C) The scores of PC5 and PC6 indicate that folpet, pyrimethanil,

spirotetramat and thiabendazole can all be well discriminated from other pesticides. (D) The scores of PC7 and PC9 confirm this

discrimination potential for folpet and pyrimethanil. This figure illustrates that using PCA to assess the potential of discrimination of

different groups requires the visual control of multiple scatterplots of scores, as the information on separability is distributed among the

different PCs or their combinations. In contrast, t-distributed stochastic neighbour embedding (t-SNE) can provide a relevant insight with a

single figure (Figure 2).

STEVENS ET AL. 5



Besides classical exploration of patterns, another attractive utilisation of t-SNE is as a tool to support pre-processing
workflow selection. In vibrational spectroscopy, many different methods of pre-processing exist which can be combined
in pre-processing workflows. For predictive modelling applications, the rigorous approach would be to include the
choice of the pre-processing in the cross-validation framework. This means applying a cross-validation procedure where
multiple pre-processing methods or combinations of them would be compared along with different values for the hyper-
parameters of the prediction method. This procedure can be very time-consuming. Therefore, many practitioners rely
instead on expert knowledge. An intermediate approach is to use t-SNE or an equivalent technique as a decision-
support tool. In this perspective, some pre-processing workflows could be compared by simply applying t-SNE to the
pre-processed dataset and inspecting the t-SNE plot. In doing so, it also makes sense to compare various values for
the perplexity parameter, as this allows setting the focus on different scales in the t-SNE map and thus to better discern
the actual dominant patterns in the dataset.

In the article, we propose to illustrate the use of t-SNE to choose the pre-processing workflow with an example
based on the PESTICIDE dataset. To quantify the separability of groups by t-SNE with the different settings, the silhou-
ette coefficient28 was used on the t-SNE maps. The silhouette coefficient is a metric that measures the proximity of each
data point to its own group compared to other groups. It is calculated by determining the average distance between a
point and all other points within its own group (same pesticide) and the average distance between the point and all the
points in the nearest neighbouring group, then subtracting the two values and dividing by the maximum of the two,
resulting in a value between �1 and 1, where higher values indicate better separation of the groups. The silhouette coef-
ficient of one group (pesticide) is the mean coefficient over all the objects of this group. In our example, both the mini-
mum and the average values over groups were considered to judge the quality of the group separation.

2.4 | Combining t-SNE with PCA

As previously explained, sometimes, the dominant factor(s) influencing the position of the points on the t-SNE map is
(are) not the one(s) of interest to the analyst. To address this issue, we propose an approach that combines t-SNE and
PCA. Our use of PCA goes beyond the simple application of t-SNE on the scores of the first PCs to speed up computa-
tion time, as presented in the original article,1 and really aims to offer new perspectives in dataset exploration. In a first
step, PCA is applied on the dataset after applying a pre-processing workflow that has been identified as relevant, using

FIGURE 4 t-distributed stochastic neighbour embedding (t-SNE) maps for different pre-processing workflows (columns) and different

values of the perplexity parameter (rows). The D1 + SNV pre-processing with perplexity values of 10 and 25 seem to be the best scenarios, as

these are the only cases where all pesticides form separate clusters, except for the two formulas containing captan. For shape and colour

legend, please refer to Figure 2 or 3.
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a large number of PCs in order to capture most of the total variance. The PCs corresponding to the irrelevant but domi-
nant variability factors are then identified. In general, due to their importance, these factors are found in the first PCs.
Next, t-SNE is applied to the matrix of the scores for all the PCs except the ones of the irrelevant factors. Doing this, the
new t-SNE map focuses on the secondary sources of variability and is able to more clearly display the potential influ-
ence of relevant factors. In this paper, we illustrate the benefits of the PCA-t-SNE approach on the OREGANO dataset.

3 | RESULTS

The following example uses the PESTICIDE dataset to illustrate the potential of t-SNE as a tool to explore a dataset,
thanks to its ability to represent the dataset structure with a single figure. A scatterplot of the t-SNE scores for the two
t-SNE coordinates and a shape and colour coding based on the ground truth for pesticide (Figure 2) shows clearly that
most of the pesticides form strongly separated clusters, except for pure captan and the mixture containing captan,
which form a single cluster with a relatively good separation between these two within it. These patterns indicate that
the nature of the pesticides is the most important factor of variability within the Raman spectral dataset. This also sug-
gests that it should be possible to build discrimination models between these different pesticides that perform well on
similar data. In contrast, visualising the same dataset with the PCA method leads to a large number of possible sca-
tterplots of scores to compare, and information on the separability of the different pesticides is scattered between them
(Figure 3).

FIGURE 5 Silhouette coefficient for each pesticide calculated from the t-distributed stochastic neighbour embedding (t-SNE) scores and

used to objectivize the quality of the clustering for the different pre-processing workflows (columns) and perplexity values (rows). The

horizontal black line represents the mean silhouette coefficient over all the samples. The combination of pre-processing workflows D1

+ SNV with perplexity 25 shows the best results, as it has both the highest value for the minimum silhouette coefficient (captan

+ trifloxystrobin) and the highest mean silhouette coefficient value.
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To illustrate the use of t-SNE as a tool to support pre-processing workflow selection, we tested four pre-processing
workflows and four different perplexity values between 2 and 80 in the pesticide dataset. The pre-processing workflows
tested are ‘none’ (the raw spectra), the Standard Normal Variate (SNV), the Savitzky-Golay first derivative with a
second-order polynomial and a window width of seven points (D1) and the combination of D1 followed by SNV. The
parameters for D1 were set based on our experience with the instrument.

Figure 4 shows the resulting t-SNE maps for the different pre-processing workflows and the different values of the
perplexity parameter. At first glance, the D1 + SNV pre-processing with perplexity values of 10 and 25 seem to be
the best scenarios, as these are the only cases where all pesticides form separate clusters, except for the two formulas
containing captan, which form a common cluster.

In order to objectivize the quality of the clustering, Figure 5 shows the silhouette coefficient calculated from the
t-SNE scores for each pesticide. The combination of pre-processing workflows D1 + SNV and perplexity 25 shows
the best results, as it has both the highest value for the minimum silhouette coefficient (captan + trifloxystrobin) and
the highest mean silhouette coefficient value. These perplexity values are consistent with the recommended range 5–
50,1 the typical default value of 30 or the recommended value of the square root of the number of objects, withffiffiffiffiffiffiffiffi
467

p ¼ 21:6:29

To illustrate the advantage of combining t-SNE with PCA, an example is shown based on the OREGANO dataset.
Savitzky-Golay first derivative with second order polynomial and a window width of five points, followed by SNV and
autoscaling were applied as pre-processing.

The scatterplot of PC1 and PC2 scores (Figure 6A) indicates that PC1 is strongly related to the country, with all
Turkish samples having negative values and all Italian samples having positive values. The t-SNE map of the pre-
processed spectra (Figure 6B) also shows that the signal is largely dominated by the effect of the country of origin of the
oregano, with the two countries forming well separated clusters (except for one three replicates of highly adulterated
Italian oregano). Other trends also seem to be present, but their visualisation is hampered by the importance of the
country effect.

Applying t-SNE on the scores of all the PCs except PC1 allows the strong trend related to the country to be elimi-
nated in the t-SNE map (Figure 6C). The influence of the level of adulteration is now clear, with the most adulterated

FIGURE 6 Results obtained with principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE)

applied on PCA scores, for the OREGANO dataset (a) scores of PC1 and PC2, (b) t-SNE using all scores and (c) t-SNE using all scores except

the scores of PC1.
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samples located at the top of the figure. In addition, differences between adulterants are also visible, with the samples
with the larger levels of adulteration being grouped by adulterant rather than by country. The figure also shows a spec-
tral resemblance between myrtle and sumac at the higher adulteration levels, while olive and cistus form more sepa-
rated clusters. At the lower adulteration levels (bottom and centre), the country effect still dominates the effect of the
adulterant, as the samples are rather clustered by country.

Figure 6C may also give first indications on the possibility to discriminate adulterated from non-adulterated sam-
ples. In any case, samples with 25% of more adulteration should be easy to discriminate from non-adulterated samples,
as they form completely separate clusters. In the case of Turkish oregano, the three replicates of the non-adulterated
sample are clearly separated from the adulterated samples, even with low levels of adulteration, indicating that discrim-
ination should be possible. For Italian oregano, on the other hand, the non-adulterated samples fall into the group of
samples adulterated with 1%–5% olive leaves.

4 | CONCLUSIONS

While PCA is a traditional method that has been incorporated into the typical arsenal of chemometrics for several
decades, t-SNE is a more versatile approach which is still in the process of adoption, at least by a portion of community
of chemical analysis and vibrational spectroscopy. t-SNE fits perfectly with the actual definition of chemometrics, ‘the
chemical discipline that uses mathematical and statistical methods, (a) to design or select optimal measurement proce-
dures and experiments, and (b) to provide maximum chemical information by analysing chemical data’.30 Indeed,
t-SNE has mathematical foundations in statistics and information theory and the patterns revealed by a t-SNE analysis
can help reorienting the experimental design or providing chemical insight.

In practice, t-SNE represents a real help in the analysis of vibrational spectroscopic datasets. It provides a global
view of the dataset allowing to distinguish the main factors influencing the spectral signal and the hierarchy between
these factors. It can also provide strong support in the choice of pre-processing, by comparing rapidly different pre-
processing approaches according to their effect on the variable of interest. In addition, the PCA-t-SNE approach pres-
ented in this article allows for a finer exploration when non-relevant factors dominate the global variability. Therefore,
we recommend using t-SNE or, if needed, PCA-t-SNE at the beginning of the analysis.

It is important to highlight that, despite its ease of use and the swiftness with which it delivers an interpretable
result, t-SNE fundamentally diverges from linear factorization methods such as PCA, introducing unique constraints,
restrictions, and limitations that demand careful consideration in its application. At our opinion, the main points to
consider are the fact that t-SNE is not deterministic, not parametric and that the results are largely dependent on
parameters that can be fixed by the user. We propose to detail these points below.

First, unlike PCA, t-SNE is indeed not deterministic. This is due to its random initialization and the fact that the
optimization method does not guarantee finding the absolute minimum. Therefore, running the algorithm multiple
times on the same data with the same settings may lead to different results, as the algorithm may converge to different
local minima. This may be viewed with suspicion and may cause the user to question the validity of the solution. How-
ever, although the orientation and the positions and distances between individual points may vary, the overall patterns
and relationships between data points are usually preserved across multiple runs.

The second limitation of t-SNE is linked to the fact that it is not parametric. Unlike PCA, there is not explicit trans-
formation between the original variables and the new coordinates. Therefore, there is no simple way to interpret the
new coordinates and relate them to the spectra, as the inspection of the loadings with PCA would allow. However,
some approaches and tools have been developed to increase the potential insight provided by t-SNE.31,32

Third, it must be emphasised here that t-SNE relies on some parameters that may impact the resulting visualisation.
For example, the perplexity is a parameter that influences the balance between local and global aspects of the resulting
embedding. Different value choices have been proposed, such as 5–50,1 the square root of the number of objects29 or
30, the default value in most t-SNE implementations. Note that more advanced extensions of t-SNE allow automatic
scale adjustment without the need to fix the perplexity, at the expense of theoretical complexity.33–35 Another parameter
to fix is the learning rate, which defines the step size in the gradient-descent optimization. However, according to our
experience, software defaults or rule of thumbs values are sufficient to provide satisfying results for the different t-SNE
parameters. In contrast, fine-tuning is usually recommended for large or very large datasets (1000–1 M objects).2,36

The possibility to visualise non-linearities is also a real advantage. With vibrational spectroscopy, the link between
the target variable and the spectral signal is usually linear or nearly linear, due to the intrinsic linearity of the Beer-
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Lambert law under favourable conditions. This justifies the use of a linear multivariate exploration methods such as
PCA. However, many situations such as complex sample matrices, physical effects or instrumental limitations lead to
non-linearities. In this context, t-SNE offers the possibility to visualise the structure of the dataset encompassing these
non-linearities. In practice, in predictive modelling applications, when no good result is obtained using a linear predic-
tion method, such as partial least-squares, the application of t-SNE can provide more information. If trends or clusters
related to the variable of interest appear on the t-SNE map, this means that alternative non-linear predictive methods,
such as support vector machine or neural network, might provide better results. In contrast, if nothing appears on the
t-SNE map after having considered the different relevant pre-processing workflows and a wide range of perplexity
values, and excluded the dominant and non-relevant variance factors using the presented PCA-t-SNE approach, then a
predictive model with good performances is in principle out of reach.
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