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ABSTRACT 30 

Biogenic amines (BAs) generally result from the decarboxylation reaction of free amino 31 

acids as a result of the activity of different microorganisms. A build-up of these 32 

compounds can result in food being spoilt. Therefore, the rapid and precise detection of 33 

BAs like histamine is an important task for food safety. This research aimed to explore 34 

the potential of Fourier-Transform Mid-Infrared (FT-MIR) spectroscopy combined with 35 

chemometric methods to assess histamine in fresh tuna quantitatively. Based on the FT-36 

MIR data, partial least squares regression models for the prediction of histamine were 37 

successfully constructed with R2>0.90. Machine learning algorithms (partial least 38 

squares-discrimination analysis, k-nearest neighbours, and support vector machine) were 39 

applied, and excellent discrimination results were achieved based on the limits specified 40 

in two different legislations (EU and FDA). The results support the use of a rapid, 41 

economic and reliable approach for the discrimination of samples that could pose a health 42 

risk to consumers.  43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

Keywords: Food safety; Histamine; Tuna; FT-MIR; HPLC; Machine learning 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

Jo
urn

al 
Pre-

pro
of



3 
 

1. INTRODUCTION 61 

 62 

Yellowfin tuna (Thunnus albacares, YFT) is one of the most important fish species 63 

belonging to the Scombridae family, constituting approximately 30% of the global tuna 64 

harvest (FAO, 2011). Tuna is considered to be of high nutritional value and can play a 65 

very important role in a balanced human diet. This species provides many essential 66 

nutrients and health benefits, being a source of high-quality proteins, vitamins, amino 67 

acids and n-3 polyunsaturated fatty acids (Khalili and Sampels, 2018; Salvador et al., 68 

2019). 69 

With regard to food safety, fish and its derived products are considered one of the 70 

most perishable products. Many extrinsic and intrinsic factors make these products highly 71 

susceptible to chemical and microbiological contamination (Herpandi et al., 2011; Xie et 72 

al., 2020). Fish handling during storage and transport may enhance the potential human 73 

health risks associated with its consumption (Papageorgiou et al., 2018). The most widely 74 

known hazard associated with tuna is the presence of high levels of histamine, which 75 

constitutes an issue for the food industry (Feng et al., 2016; Prester, 2011). Histamine, a 76 

biogenic amine (BA), is produced in the flesh from histidine due to the activity of the 77 

bacterial enzyme histidine-decarboxylase (Lehane and Olley, 2000; Ordóñez and 78 

Callejón, 2019). Although histamine is essential to many key functions in humans and 79 

animals, a high intake of histamine, known as scombroid food poisoning, may cause 80 

adverse toxicological effects, such as neurological disorders, gastrointestinal diseases, 81 

headaches and urticaria, among others (Hungerford, 2010; McLauchlin et al., 2006), the 82 

effects of which will depend on the sensibility of each person. The production of 83 

histamine is intricately linked to microbial growth, and other BAs like cadaverine and 84 

putrescine can be generated concurrently (Sánchez-Parra et al., 2022; Shakila et al., 85 

2003).  86 

Histamine is the only BA appearing in legislation to which regulatory limits have 87 

been applied. Commission Regulation (EC) No. 2073/2005 on microbiological criteria 88 

for foodstuffs established a maximum histamine level of 200 mg/kg as acceptable in fresh 89 

fish. In application of this legislation, in a sample of nine randomly collected units, only 90 

two may contain between 100 – 200 mg/kg of histamine and none may be above the limit 91 

of 200 mg/kg in fish species associated with a high amount of histidine such as the 92 

Scombridae, Clupeidae, Coryphaenidae, Engraulidae, Pomatomidae, and 93 
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Scomberesocidae families. Nevertheless, the Food and Drug Administration (FDA, 2011) 94 

set a maximum limit of 50 mg/kg. Other countries such as Canada, Finland and 95 

Switzerland established 200 mg/kg as a maximum recommended limit for this BA 96 

(DeBeer et al., 2021). No regulations have been established for cadaverine (Sánchez-97 

Parra et al., 2023), since the information regarding the toxicity of this BA is limited, as 98 

only a few studies are available in animals (Omer et al., 2021) and no studies are available 99 

that analyse dose response in humans. 100 

In the context of foodborne outbreaks of Scombroid poisoning, ensuring control 101 

over histamine levels in tuna emerges as critically significant. In the Rapid Alert System 102 

for Food and Feed (RASFF) organized among the member states of the European Union, 103 

histamine represents one of the most common notifications. During the periods from 2000 104 

to 2010 and 2011 to 2021, a total of 314 and 383 notifications were reported for histamine 105 

in fish and fish products, respectively. Numerous studies have been published focusing 106 

on the assessment of incidents related to histamine poisoning (Colombo et al., 2018; 107 

Leuschner et al., 2013; Visciano et al., 2020). Hence, the development of analytical 108 

techniques for the determination of BA levels is essential in assessing food toxicity as it 109 

serves as a quality marker of freshness, adherence to good manufacturing practices, and 110 

product preservation status (Peng et al., 2008; Shakila et al., 2003). Presently, high-111 

performance liquid chromatography (HPLC) stands as the reference analytical method in 112 

the European Union (EU) as governed by the Commission Regulation (EC) No. 113 

1441/2007, amending Regulation (EC) No. 2073/2005, and by Commission Regulation 114 

(EU) No. 1019/2013, amending Annex I to Regulation No. 2073/2005. However, in the 115 

literature, several alternative techniques have been used for the analysis of BAs, such as 116 

thin-layer chromatography (Bajc and Gačnik, 2009; Lapa-Guimarães and Pickova, 2004; 117 

Tao et al., 2011), gas chromatography-mass spectrometry (GC-MS) (Awan, 2008; Huang 118 

et al., 2016; Kamankesh et al., 2019), the enzyme-linked immunosorbent assay (Köse et 119 

al., 2011), fluorimetric methods (Muscarella et al., 2013), ion-mobility spectrometry 120 

(Cohen et al., 2015) or real-time mass spectrometry (Nei et al., 2017). These techniques 121 

have been widely used to assess the freshness of fish due to their proven performance and 122 

accuracy (Cheng et al., 2013). Nevertheless, these techniques have several drawbacks 123 

since they not only need to use expensive and contaminant/toxic solvents but are also 124 

time consuming and involve laborious sample preparation. Besides, the analysis of 125 

samples using chromatographic techniques poses additional difficulties due to limited 126 
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absorption properties within the visible, ultraviolet, or fluorescence wavelength ranges, 127 

necessitating derivatization for detection (Ordóñez et al., 2016). In this context, in recent 128 

years, simple, quick, precise, inexpensive and non-destructive methods have been 129 

proposed to complement or replace the traditional techniques. As an alternative, 130 

vibrational techniques (near-infrared, Raman spectroscopy, hyperspectral imaging) can 131 

offer sensitive, swift, and unique chemical insights for assessing fish quality and safety 132 

(Rodriguez-Saona et al., 2016). As a large amount of data is obtained after the analysis 133 

of the samples using vibrational techniques, chemometric tools are used to build 134 

mathematical models that allow samples to be differentiated (Almoujahed et al., 2023; 135 

Cárdenas-Escudero et al., 2023; Massart et al., 1997; Peris-Díaz and Krezel, 2021). 136 

In the literature, vibrational spectroscopic techniques coupled with machine 137 

learning have been used to assess food (Abdel-Nour et al., 2011; Magwaza et al., 2012; 138 

Nguyen et al., 2022; Qi et al., 2022) and fish freshness (Franceschelli et al., 2020; Wang 139 

et al., 2019). Furthermore, the quantification of histamine in fish matrices to implement 140 

quick and efficient tools to facilitate verification within the industry is necessary. In their 141 

research, Ghidini et al. (2021) investigated the application of NIR spectroscopy (1000-142 

2500 nm) for estimating the histamine levels in both raw and processed tuna fish. They 143 

employed Orthogonal PLS regression to establish a correlation between the spectral data 144 

and the histamine concentrations determined through the reference HPLC method, 145 

ranging from 10 to 1000 mg/kg. Moreover, Asghari et al. (2022) proposed attenuated total 146 

reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy as a non-invasive, 147 

robust and rapid method to measure histamine levels in tuna fish samples. They utilized 148 

a PLS regression alongside two wavelength selection techniques: interval-partial least 149 

squares and the generic algorithm (GA). The authors reported a lower quantification limit 150 

(4.68 mg/kg) for GA-PLS obtained in a histamine range between 5 and 100 mg/kg. The 151 

two studies mentioned above showed promising results when measuring histamine 152 

content in fresh and processed tuna fillets, but they presented drawbacks that made both 153 

approaches more time-consuming than expected, since pre-processing steps such as 154 

sample extraction were included and therefore involved a destructive analysis of the 155 

sample. 156 

The purpose of this research is to evaluate the use of FT-MIR spectroscopy in 157 

combination with chemometric methods for two main objectives. The first one 158 

corresponds to the quantitative measurement of different histamine levels in raw tuna 159 
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fillets, without any other sample pretreatment. The second objective, which we believe is 160 

novel, consists of the integration of discrimination algorithms with FT-MIR spectroscopic 161 

analysis to distinguish tuna samples according to their histamine concentration, in 162 

accordance with European Commission and FDA regulations. 163 

2. Material and methods 164 

2.1. Chemicals  165 

All reagents utilized were of analytical-chemical grade. Panreac (Barcelona, 166 

Spain) supplied toluene, perchloric acid, methanol, acetonitrile, toluene, deionized water, 167 

and sodium carbonate. Histamine, dansyl chloride, L–proline and 1,7– diaminoheptane 168 

(internal standard) were obtained from Sigma–Aldrich (Steinheim, Germany). 169 

2.2. Fish Samples and Experimental Design 170 

A total of 66 samples of Yellowfin tuna (Thunnus albacares) fillets from six 171 

different tuna batches were collected during the period between July 2020 and December 172 

2021 from five different companies in Andalusia, Spain (FAO area 34, Eastern Atlantic 173 

Ocean). The samples were kept on ice during both sampling and transportation to the 174 

laboratory. Then, in the laboratory, the samples were filleted with an area of 3.5 x 3.5 cm 175 

in freezing conditions, individually packed in plastic bags, divided into randomly six 176 

groups of 11 samples and kept at -20ºC. The experimental design consisted of a control 177 

group (coded as 0), and five groups stored at 22 ± 2°C for 1, 3, 5, 7, and 10 days, 178 

respectively, to potentially vary histamine levels. 179 

  180 

2.3. HPLC-DAD analysis 181 

The content of histamine was analysed following the official reference method 182 

mandated by European Regulation No. 2073/2005, as per the procedure proposed by 183 

Duflos et al. (1999) and modified by Duflos et al. (2019). In summary, 5 g of fresh tuna 184 

samples were weighed and mixed with 10 mL of 0.2 M perchloric acid solution and 100 185 

µL of 1,7– diaminoheptane (internal standard, 6.4 mg/L) in a centrifuge tube. This 186 

mixture underwent homogenization using an Ultra-turrax homogenizer (Ultraturrax®, 187 

Stauten, Germany) within an ice bath and was subsequently centrifuged for 10 min at 188 

15,000 rpm at 4 ºC. For the derivatization step, 0.100 mL of supernatant was combined 189 

with 0.300 mL of sodium carbonate solution and 0.400 mL of dansyl chloride solution 190 
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(7.5 mg/mL) in an Eppendorf tube. After vortexing, the tube was incubated at 60 °C for 191 

5 minutes in a stirred water bath (Unitronic Reciprocating Shaking Bath, model 6032011, 192 

J.P. Selecta, Barcelona, Spain). The excess of the derivatization reagent was then 193 

neutralized by adding 0.1 mL of L-proline solution (0.1 mg/L) and left in the dark for 15 194 

minutes, followed by another 15 minutes of darkness after vortexing.  195 

Following this, 0.5 mL of toluene was added, and the tubes were vortexed and 196 

frozen to separate the organic phase containing the histamine dansyl derivate of the 197 

aqueous phase at –80 °C for 15 minutes. The isolated organic phase underwent 198 

concentration through drying using a Speedvac concentrator (Eppendorf, Hamburg, 199 

Germany) and the resulting dry residue was resuspended in 0.2 mL of a solution 200 

comprising acetonitrile:water (6:4;v/v), followed by vortexing and centrifugation. 201 

The histamine was determined using a liquid chromatograph system coupled to a 202 

diode array detector (HPLC-DAD, PerkinElmer PE200, Waltham, MA, USA) equipped 203 

with an autosampler. The reverse-phase column employed was a Luna C18 (5µm, 250 x 204 

4.6 mm) with a C18 pre-column, 4.0 x 3.0 mm, from Analytical Phenomenex (Torrance, 205 

CA, USA). The detection was performed at 254 nm. The histamine was quantified using 206 

the individual standard curve (Table S1). All measurements were conducted three times 207 

for each sample. 208 

2.4. Fourier transform mid-infrared (FT-MIR) spectroscopy  209 

The instrumentation utilized was a FT-MIR Vertex 70 spectrometer (Bruker 210 

Optics, Ettlingen, Germany) equipped with a Globar source and a room temperature 211 

deuterated lanthanum α-alanine-doped triglycine sulfate (DLaTGS) detector. For 212 

analysis, each tuna flesh (3.5 x 3.5 cm) sample was stored in a refrigeration chamber at 213 

4°C for 15 hours, until completely thawed. Then, the analyses were replicated three times 214 

placing the tuna samples directly onto the attenuated total reflectance (ATR) crystal, 215 

ensuring complete coverage of the crystal surface and optimal contact between the tuna 216 

samples and the crystal. To mitigate external interferences, the ATR crystal underwent 217 

cleaning with distilled water and 70% ethanol, followed by drying with wiping paper after 218 

each sample scan. Prior to each instance of scanning, the spectra against air (mainly H2O 219 

and CO2) were recorded.  Spectra were obtained at a resolution of 4 cm−1, spanning the 220 

spectral range of 4000 to 600 cm−1 (1763 variables), with an average of 64 scans. All data 221 
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analyses were performed at a room temperature of 25 ºC. The data were exported using 222 

Opus 7.2 software package (Bruker Optics Inc., Billerica, MA, USA). 223 

2.5. Chemometric methods 224 

In the chemometric analyses, the dependent variable (Y) was the concentration of 225 

histamine determined by the reference methods previously indicated, while the FT-MIR 226 

spectra were used as the independent variables (X).  The chemometric techniques applied 227 

in this research, as follows: 1) Principal component analysis (PCA) to discern 228 

interrelationships among samples (clusters) and identify outliers in the X dataset, and 2) 229 

Partial least squares (PLS) regression. Furthermore, three discriminant analysis methods 230 

were applied to develop models for classifying samples under the limits set forth by FDA 231 

and European legislation: i) Partial least squares-discriminant analysis (PLS-DA); ii) K-232 

nearest neighbors (KNN); and iii) Support Vector Machine (SVM) (Berrueta et al., 2007; 233 

Borràs et al., 2015; Cozzolino et al., 2011; Djuris et al., 2013). These multivariate 234 

analyses were carried out using PLS toolbox 7.0 (v.7.0, Eigenvector USA) under Matlab 235 

2017bR (Mathworks, USA).  236 

2.5.1. Data pre-processing 237 

The average of the three replicates for each sample was computed to derive a final 238 

representative spectrum (Figure 1). To remove baseline offset, light scattering effects, 239 

signal noise, optical path shift or universal intensity changes, among others, spectral pre-240 

processing was applied to the raw data (Mishra et al., 2020; Yang et al., 2021). In this 241 

work, ten different spectral preprocessing methods were applied to improve recognition 242 

accuracy prior to modeling, including First-Derivative (Saviztky-Golay algorithm; 9 and 243 

15-point window), Second-Derivative (Saviztky-Golay algorithm; 9 and 15-point 244 

window) (Savitzky and Golay, 1964), Standard Normal Variate (SNV) (Barnes et al., 245 

1989), Multiplicative Scattering Correction (MSC) (Geladi et al., 1985), and combined 246 

pretreatment as First Derivative-SNV (FD-SNV), Second Derivative-SNV (SD-SNV), 247 

SNV-First Derivative (SNV-FD) and SNV-Second Derivate (SNV-SD). Once the 248 

different combinations were checked, the best spectra pre-processed observed were the 249 

SNV combined with Savitzky-Golay first derivate (quadratic polynomial fit using a 15-250 

point window). 251 

2.5.2. Principal component analysis  252 
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PCA is an unsupervised pattern recognition technique widely used to categorize 253 

samples based on spectral differences. PCA reduces the dimensionality of complex 254 

datasets by extracting essential information based on the spectral attributes of the samples 255 

examined. The creation of new uncorrelated variables from the original set of variables 256 

is called principal components (PC) (Liu et al., 2020; Shao et al., 2022).  As a result, the 257 

interrelationships between the original variables and the samples, in the new PC space, 258 

can be identified as clusters in the maps of loadings and scores, respectively. In this study, 259 

PCA was applied to investigate the clustering of samples and to detect outliers by 260 

applying the Hotelling T2 statistic (95% confidence interval) (Nieuwoudt et al., 2004; 261 

Vermeulen et al., 2021). 262 

2.5.3. Quantitative Models for Histamine  263 

Partial least squares regression (PLSR) models were developed to establish a 264 

linear correlation between the FT-MIR spectral data of samples (X) and the different 265 

variables to be predicted (Y), namely histamine (Lee et al., 2011; Lutz et al., 2006; 266 

Ramadan et al., 2006). PLSR, an advanced technique that combines the features of PCA 267 

and regression, effectively addressed the main drawbacks associated with spectral data 268 

analysis, such as collinearity and overlapping bands. This technique is advantageous 269 

when the number of independent variables exceeds the number of dependent variables 270 

(Iqbal et al., 2013; Mahanti et al., 2020). PLSR aims to maximize covariance, capturing 271 

variance and establishing correlations within the data (Xiaobo et al., 2010). The 272 

fundamental principle underlying PLSR is to extract latent variables (LVs) that account 273 

for as much of the spectral variance as possible while modelling the variables to be 274 

predicted (Roy et al., 2015). 275 

To avoid bias in the subset division, all samples were initially sorted in ascending 276 

order based on their reference histamine levels. Subsequently, the dataset was randomly 277 

divided into three subsets:  278 

• Subset 1: samples with concentrations <100 mg/kg (number of samples 20) 279 

• Subset 2: samples with concentrations >300 mg/kg (number of samples 23) 280 

• Subset 3: samples with concentrations between 100 and 300 mg/kg (number of 281 

samples 23) 282 

In this regard, the models were constructed as follows: 283 
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(A)  Model 1: calibration set comprising Subset 2 and 3 (N=46) and validation 284 

set including Subset 1 (N=20). 285 

(B) Model 2: calibration set comprising Subset 1 and 3 (N=43) and validation 286 

set including Subset 2 (N=23). 287 

(C) Model 3: calibration set comprising Subset 1 and 2 (N=43) and validation 288 

set including Subset 3 (N=23). 289 

To validate the PLSR models, a 10-fold cross-validation was employed. This cross-290 

validation approach was employed to guarantee that the model was trained to 291 

accommodate the variability present in the calibration dataset throughout the training 292 

phase. The performance of the calibration model was assessed using the number of LVs 293 

and the root mean squares error of cross-validation (RMSECV) as an internal indicator 294 

of the predictive ability of the models (Equation 1):  295 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
   [1] 296 

where 𝑦�̂� is the concentration of histamine predicted by the model, yi is the concentration 297 

reference of histamine and n is the number of samples in the calibration set.  298 

Once the final models were established, the validation set was used to evaluate the 299 

expected error when the model was applied to predict new samples. Root mean squared 300 

errors of prediction (RMSEP) were calculated using Equation 2: 301 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑡,𝑖−�̂�𝑡,𝑖)2𝑛𝑡

𝑖=𝑙

𝑛𝑡
   [2] 302 

where 𝑦𝑡,�̂� is the concentration of histamine predicted by the model, yt,i is the concentration 303 

reference of histamine and nt is the number of samples in the validation set. 304 

The criteria for selecting the most suitable model focused on minimizing the RMSECV 305 

and RMSEP, optimizing the number of LVs and maximizing R2 values (Wilkerson et al., 306 

2013). 307 

2.5.4. Discriminant Analysis Algorithms 308 

Three different multivariate data analysis techniques — namely, Partial Least 309 

Squares-Discriminant Analysis (PLS-DA), the K-nearest neighbors (KNN) technique and 310 

Support Vector Machines (SVM) — were employed to build models for classifying  311 
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samples as falling below or above the limits specified by the European legislation (100 312 

mg/kg) or the FDA regulation (50 mg/kg) to achieve a correct classification based on the 313 

histamine concentration limits.  314 

The confusion matrix is a concept from machine learning, to evaluate the 315 

performance of a classification model. It offers a concise overview of the model's 316 

predictions, categorizing instances into four groups: true positives (TP, correctly 317 

predicted positive instances), true negatives (TN, correctly predicted negative instances), 318 

false positives (FP, incorrectly predicted as positive), and false negatives (FN, incorrectly 319 

predicted as negative). In this study, the performance of the models was evaluated in 320 

terms of sensitivity (SEN) and specificity (SPE) defined as follows: 321 

SEN =  
TP

(TP+FN)
            [3] 322 

 SPE =  
TN

(TN+FP)
    [4] 323 

where SEN demonstrated its capability to identify samples belonging to the target class 324 

and SPE indicated the model's capacity to distinguish and reject samples from other 325 

classes. The percentage of correct predictions (true positive and true negative) and its 326 

corresponding confusion matrix served as the ultimate parameters for assessing the 327 

goodness of the model. 328 

Validating discriminant models holds great importance in assessing the 329 

performance of classification models. Due to the influence of the choice of segmentation 330 

on the sensitivity of validated misclassification rates (Kjeldahl and Bro, 2010), drawing 331 

conclusions about the real dependency of data predictions on a random artefact of a 332 

simple structure becomes challenging (Ojala and Garriga, 2010). The Kennard-Stone 333 

algorithm (KS) (Saptoro et al., 2012) considers all samples as potential candidates for the 334 

training set and, in turn, selects specific samples to form the validation set based on a 2:1 335 

ratio. The main objective of the KS algorithm is to maximize the minimum Euclidean 336 

distances between the already selected samples and the remaining ones (Claeys et al., 337 

2010), as defined by Equation [5]. 338 

𝑑𝑥(𝑝, 𝑞) = √∑  [𝑥𝑝(𝑗) − 𝑥𝑞(𝑗)]2𝑁
𝑗=1 ; 𝑝, 𝑞 ∈ [1, 𝑁]  [5] 339 
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where N is the number of spectral wave points of the sample, and xp and xq represent two 340 

different samples. 341 

Initially, KS identifies the two samples with the maximum Euclidean distance, 342 

forming the starting point of the selection process. Subsequently, for each remaining 343 

sample, the algorithm stores the nearest Euclidean distances in a distance list along with 344 

the corresponding sample number. From this list, the sample with the maximum distance 345 

is chosen, and this iterative procedure continues until the desired number of samples is 346 

achieved. In our modelling approach, two-thirds of the samples (Ncalibration = 45) were 347 

allocated to the calibration group, and the remaining one-third of the sample set was 348 

selected as a validation group to obtain predictions using the model (Nvalidation = 21). 349 

As we all know, ensuring an effective evaluation is crucial to check the 350 

performance of each classifier. This enables us to ascertain whether a specific 351 

classification approach is sufficiently adapt for particular predictive tasks. However, this 352 

critical evaluation step is seldom addressed in other spectroscopy research publications. 353 

For this purpose, to optimize the model parameters in both PLS-DA, KNN, and SVM, a 354 

10-fold cross-validation technique was employed. During this cross-validation process, 355 

each subset was employed once as a validation set, with the remaining nine subsets 356 

utilized as the calibration set. This process was repeated ten times, employing distinct 357 

subsets for evaluation on each iteration, and the outcomes were averaged to gauge model 358 

performance. This approach provides a more objective examination of how the model 359 

might perform with unknown samples (Stone, 1974). Hence, five different datasets were 360 

randomly constructed, and the three models were reconstructed. Moreover, for the 361 

validation of the classification model, a permutation test was proposed (Westerhuis et al., 362 

2008).  363 

 In summary, in a permutation test, the class labels are permuted and randomly 364 

reassigned 'incorrectly' to the samples. The model is then constructed using these samples 365 

with the wrong class assignments, compelling the model to generate both false negative 366 

and false positive outcomes (Golland et al., 2005; de Souza et al., 2020). This procedure 367 

enables the assessment of the probability that predictions occur by random chance, aiding 368 

in verifying whether the optimized parameters of a model are susceptible to overfitting or 369 

not (Liu et al., 2006). In this study, a permutation test with 200 iterations was conducted, 370 

generating a random dataset under a null hypothesis H0 (no difference between classes). 371 

For the results obtained from the non-permuted sample set to be considered significant, 372 

Jo
urn

al 
Pre-

pro
of



13 
 

they must fall outside the 95 or 99% confidence limits of the H0 distribution derived from 373 

the permuted classifications. Subsequently, the significance of the models was evaluated 374 

using the Wilcoxon test (Pratt, 1959), the sign test (Thomas, 2003), and the t-random test 375 

(van der Voet, 1994), all at a significance level of 95% (α = 0.05). 376 

2.5.4.1. Partial Least-squares Discriminant Analysis (PLS-DA) 377 

PLS-DA is a supervised method based on the partial least squares regression, 378 

which transforms the regression method into a technique for discriminating multivariate 379 

chemical data (Gromski et al., 2015). Its primary objective is to construct classification 380 

models applicable to future predictions (de Santana et al., 2016). This is achieved through 381 

the utilization of a dummy matrix (Y), an N x F, matrix with N rows (total number of 382 

samples) and F columns (number of classes), encoding class membership through a 383 

binary system. In a two-class scenario, as discussed in this study, the dummy vector Y 384 

contains 1s in rows corresponding to Class 1 and 0s in the remaining rows (Class 2). The 385 

PLS-DA model is then computed by estimating Equation 6: 386 

y=Xb + e             [6] 387 

where X represents the data matrix, and b and e are vectors of regression 388 

coefficients and residuals, respectively.  389 

When applying the model to a new set of measures (Xnew), the predicted Ynew 390 

comprises continuous values, so a rule is needed to classify the samples. In a two-class 391 

scenario, a common practice is to set a threshold at 0.5, despite potential classification 392 

errors due to the method's general nature. However, various literature approaches aim to 393 

refine this choice (Barker and Rayens, 2003; Indahl et al., 2007; Pérez et al., 2009). In 394 

this study, a more refined threshold was determined using a Bayesian algorithm, initially 395 

estimating probabilities, and subsequently discriminating samples. The objective was to 396 

identify a threshold where FP and FN are minimized (Tormena et al., 2019). Values 397 

exceeding this threshold signify that the samples pertain to the modeled class, while lower 398 

values suggest samples that do not belong to this class (Valderrama et al., 2022). 399 

2.5.4.2. K-Nearest Neighbors (KNN) 400 

The KNN is a linear and non-parametric supervised pattern recognition method 401 

(Clarke et al., 1974). The principle of this method is based on proximity - it classifies an 402 

unknown sample of the validation set based on the majority of its K-nearest neighbours 403 
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in the calibration set (Berrueta et al., 2007). Commonly, similarity is measured by the 404 

Euclidean distance between spectra, and classification is performed on the group to which 405 

most of the k objects belong, with ties broken by the sums of the relevant distances. The 406 

parameter K has a large impact on the classification model; and it is optimized by 407 

calculating the prediction ability at different values of k.  It is often advisable to choose 408 

lower k values, such as 3 or 5, when employing this algorithm (Chen et al., 2011). 409 

The KNN method offers several advantages, among other, its mathematical 410 

simplicity, allowing it to produce classification outcomes potentially superior to other 411 

more intricate pattern recognition techniques. Additionally, its efficiency remains 412 

consistent regardless of the spatial distribution of classes. However, it's worth noting that 413 

KNN may struggle when significant disparities exist in the sample sizes of each class, as 414 

this can lead to excessively slow computations (Berrueta et al., 2007; Jiang et al., 2007). 415 

2.5.4.3. Support vector machines (SVM) 416 

The theory of SVM has been extensively described in literature (Fernández-Pierna 417 

et al., 2004; Fernández-Pierna et al., 2005). SVM is a non-linear supervised statistical 418 

learning method developed by Vapnik and co-workers (Cortes and Vapnik, 1995; Vapnik, 419 

1995).   420 

The concept of SVM stems from the classification of binary problems, aiming to 421 

identify a hyperplane that effectively separates two data sets. In case the linear boundary 422 

in the low-dimension input space is insufficient for the proper separation of two classes, 423 

it is possible to create a hyperplane that allows a linear separation in a higher-dimensional 424 

feature space. This transformation is achieved through a conversion function that maps 425 

data from the original input space to a higher-dimensional feature space, making it 426 

linearly separable. This transformation is facilitated by a kernel function (Mammone et 427 

al., 2009). Through an appropriate selection of a kernel function, any consistent training 428 

set can be made separable. In this study, a Gaussian kernel function was selected as it is 429 

the simplest and quickest to calculate (Berrueta et al., 2007). Its structure is the radial 430 

basic function (RBF) Equation 7: 431 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−
||𝑥𝑖−𝑥𝑗||2

2𝜎2  )      [7] 432 

where σ is the bandwidth of the RBF function (kernel parameter) and it reflects the degree 433 

of generalization. 434 
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To obtain a good performance of SVM model, some parameters need to be 435 

optimized by grid search (GS) (Fayed and Atiya 2019). These parameters include: C (the 436 

penalty factor) and σ (the radial width of the kernel function). C minimizes both the fitting 437 

error and the model's complexity, whereas σ determines the non-linear mapping from the 438 

input space to the high-dimensional feature space (Li et al., 2019). When C is decreased, 439 

more emphasis is placed on maximizing margin and enhancing generalization.  In 440 

addition, generalization can also be improved by increasing the value of σ in the Gaussian 441 

function. 442 

3. Results and discussion 443 

3.1. Histamine analysis 444 

In order to identify possible Y data (histamine concentration) outliers during the 445 

10-day incubation period at room temperature (22 ± 2 ºC), a boxplot analysis was carried 446 

out and is presented in Figure 2. In this graph, the median was represented as the central 447 

mark, the 25th and 75th percentiles marked the edges of the box, and the whiskers 448 

extended to the most extreme data points, excluding outliers, as outlined by Quintelas et 449 

al. (2019).  450 

Regarding the data, the samples were distributed based on their concentration 451 

(Table 1). In this sense a total of 16 samples were identified with a histamine 452 

concentration below 50 mg/kg (the limit established by the FDA). After being caught, 453 

tuna is frozen aboard fishing vessels using a brine immersion freezer set at temperatures 454 

below -8 ºC. The protective influence of salt is credited with reducing the likelihood of 455 

microbial contamination (Barbosa et al., 2018). This explains why low histamine levels 456 

were found in those samples. For the range established between 50 and 100 mg/kg, only 457 

five samples were detected, while 13 samples presented concentrations in the range 458 

between 100 and 200 mg/kg.  The levels of histamine in the samples at room temperature 459 

showed a significant increase over the incubation period (Figure 2), reaching 460 

concentrations close to 1000 mg/kg. This phenomenon can be attributed to the elevated 461 

bacterial growth and enzyme activity observed at this temperature, as reported by Ekici 462 

and Omer (2020), which accelerates the decarboxylation of the amino acid histidine into 463 

histamine (Altieri et al., 2016).  464 

The fluctuations  in histamine levels observed over the storage time of the tuna could be 465 

attributed to variances in the microbial levels among the collected samples. Additionally, 466 
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prior studies have indicated that the production of this amine is influenced by factors such 467 

as the individual fish, the sampled fish part, time, temperature, and the type and number 468 

of bacterial species present (Economou et al., 2007; Sánchez-Parra et al., 2022). The 469 

interplay of these factors may contribute to the variation in the histamine levels within 470 

individual lots of fish and even among individual fish.  471 

3.2. Principal Component Analysis (PCA) 472 

PCA was performed using pre-processed FT-MIR spectra to identify the capacity 473 

of samples clustering by SNV + first derivate Savitzky-Golay. Figure 3a shows the scores 474 

plot for the first two PCs. The total variance explained by the first two components was 475 

84.52% (PC1 = 72.37% and PC2 = 12.15%). It is possible to observe a pattern clearly 476 

demonstrates the grouping of tuna samples into seven categories, based on their histamine 477 

levels (Fig. 3a). Moreover, the PCA suggests the presence of two clusters. The samples 478 

with a higher concentration of histamine are on the positive quadrant of the PC1 479 

(histamine levels ranging from 200 to 1000 mg/kg) and samples with lower histamine 480 

levels (<LOD (limit of detection) to 200 mg/kg) tended to move towards the PC1 negative 481 

quadrant. These findings suggest that the second primary component correlates with the 482 

spectral variability among samples, stemming from differences between individual fish 483 

and batches, while the first primary component is linked to the level of tuna flesh 484 

decomposition (histamine content). 485 

To further investigate the bands with the greatest influence on potential sample 486 

discrimination, we analyzed the graph of the loadings corresponding to PC1 and PC2 487 

(Fig. 3b). Typically, the MIR spectrum encompasses four identifiable regions: the double-488 

bond region (2000–1500 cm−1), the fingerprint region (1500–600 cm−1), the X–H 489 

stretching region (4000–2500 cm−1), and the triple-bond region (2500–2000 cm−1) 490 

(Karouiet al., 2010).  The higher loading of PC1 and PC2 are linked to the most important 491 

regions of the tuna samples spectrum. In our study, specific peaks stood out, specifically 492 

at 1634 and 1659 cm-1 (weights positively in PC1 and PC2, respectively). These peaks 493 

correspond to the Amide I band, which represents the most intense absorption band in 494 

proteins. The highlighted peaks resulted from the stretching vibrations of the C=O (70–495 

85% of the potential energy) and C-N groups (10–20%) (Bandekar, 1992; Karoui et al., 496 

2010). This frequency typically falls within the range of 1600 to 1700 cm-1. Next to the 497 

Amide I group, another prominent peak emerges at 1564 cm-1, attributed to Amide II 498 

group. This region is more intricate than Amide I and mainly stems from in-plane N-H 499 
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bending (40–60%), with the remaining potential energy assigned to C-N (18-40%) and 500 

C-C stretching vibrations (approximately 10%) (Venyaminov and Kalnin, 1990). The 501 

increase in the signal intensity could be explained as a direct increase of free amino acids 502 

and peptides resulting from proteolysis during the tuna decomposition period. 503 

Additionally, the loadings revealed a contribution from bands belonging to the region 504 

between 1400 to 1200 cm−1, corresponding to Amide III (1381 and 1377 cm-1). This 505 

region encompasses complex bands influenced by the force field details, the nature of the 506 

side chain and the hydrogen bonding (Karoui et al., 2010). Moreover, absorption bands 507 

were observed in the 950-1200 cm-1 range, corresponding to the C-N stretch of histamine 508 

compound (1160 cm-1).  Lastly, the peak at 3300 cm−1 is due to the vibration of the O–H 509 

bond in water and the amide A of proteins (3270 cm−1).  These results indicated that the 510 

negative variation found by PCA analysis, regarding PC1, could be associated with the 511 

decrease in histamine content present in the tuna samples. 512 

3.3. PLS models for quantitative predictions  513 

The PLSR models for histamine quantification were developed utilizing various 514 

preprocessing techniques outlined above. Various parameters were employed to evaluate 515 

the performance of these PLSR models. Accuracy was assessed through coefficients of 516 

determination for calibration (R2
C) and prediction (R2

P). A coefficient of determination 517 

approaching 1 indicates a strong correlation between the predicted and measured values 518 

in both calibration and prediction sets. The RMSECV based on contiguous cross-519 

validation procedure was utilized to evaluate the modeling capacity of the PLSR model 520 

using calibration set. In this study, ten different spectral preprocessing methods, namely, 521 

FD (9 and 15 points window), SD (9 and 15 points window), SNV, MSC, FD-SNV, SD-522 

SNV, SNV-FD and SNV-SD, were compared to investigate their influences on the 523 

performance of the PLSR models. The results of the optimization of the spectral 524 

pretreatment methods are shown in Tables S2, S3 and S4.  525 

Three PLSR models were developed (Figure 4). The best performance of the 526 

PLSR model 1 (Subsets 2 and 3) for the quantitation of histamine was obtained based on 527 

the preprocessing of SNV+FD (Savitzky-Golay algorithm, quadratic polynomial fit using 528 

a 15 points window) (Savitzky and Golay, 1964), with the latent variables of 5, the Rcv
2 529 

and Rp
2 of 0.991 and 0.978, and the RMSECV and RMSEP of 21.7875,  and 5.8435 530 

mg/kg, respectively (Table S2). With respect to PLSR models 2 and 3 (Subsets 1 and 3, 531 

and Subsets 1 and 2, respectively), the optimal quantification models were developed 532 
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after the same pretreatment of SNV+FD, with the latent variable of 6. The optimum latent 533 

variables used in the model development determined the lowest error in cross-validation 534 

(Fig. 4) and therefore avoided overfitting (Prieto et al., 2014). The RMSECV was 22.7376 535 

and 15.6790 mg/kg, respectively. Moreover, the Rp
2 and RMSEP were 0.970 and 9.28 536 

mg/kg for the PLSR model 2 (Table S3) and 0.967 and 37.0270 mg/kg for the PLSR 537 

model 3 (Table S4). 538 

The values of the R2 in all models indicated the excellent quality of the fit. When 539 

utilizing spectroscopy methods to predict chemical characteristics and quantify 540 

components in food, achieving an R2 value surpassing 0.95 is considered an excellent 541 

indicator of the model's quality (Shenk and Westerhaus,1996). However, the probability 542 

of attaining such optimal outcomes rises proportionally with the quantity of the specific 543 

component to be quantified. Despite histamine in fish being present at parts per million 544 

(ppm) levels, the reliability of obtaining an R2 > 0.90 can be linked to the suitability of 545 

pre-processing techniques. These techniques are known to enhance the linear relationship 546 

between spectral signals and analyte concentrations (Rinnan et al., 2009). This 547 

improvement has been validated for various food contaminants found at comparable or 548 

lower concentration ranges than those of biogenic amines, like total volatile basic nitrogen 549 

(TVBN) or K value (Ding et al., 2014; Liu et al., 2022; Yan et al., 2023). Although the 550 

RMSECV obtained in the models using the 10-fold cross-validation were higher than the 551 

calibration, a well-dispersed and random distribution of the residuals was obtained (data 552 

no shown). This fact can be explained by the number of spectra used in the validation. 553 

The parameter RMSEP expresses the average error expected when the calibration model 554 

is applied to unknown tuna samples in future predictions. Low values indicate that these 555 

models were reliable and robust. Hence, the prediction models derived from FT-MIR 556 

spectra fitted well with experimental measurements and hold significant promise for 557 

advancing the development of a novel methodology for quality control and food safety 558 

applications. 559 

3.4. Qualitative analysis of histamine in tuna samples with classification purposes 560 

based on existing (EU and FDA) legislations 561 

Recent research suggests that a promising avenue for further exploration involves 562 

employing the European and FDA thresholds to construct classification models for 563 

discerning fish samples (tuna, sardines) based on their histamine content (Asghari et al., 564 

2022; Ghidini et al., 2021). In most food-related quality control problems, higher 565 
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sensitivity rates are more critical than specificity. Based on the data regarding the 566 

notifications of histamine in fish and fish products, we considered that the availability of 567 

rapid techniques would be of interest to the industries, as those techniques could be 568 

applied in the reception of tuna and along the production chain as a means of 569 

discriminating between tuna samples.  570 

The three supervised methods used, PLS-DA, KNN and SVM, were developed 571 

using two sets (calibration and prediction) by similarity grouped according to the 572 

Kennard–Stone algorithm. The calibration set was composed of 45 samples whereas the 573 

test set consisted of the remaining 21 samples. Only the calibration data set was used to 574 

build the classification model, while the prediction data set was used to test its ability to 575 

classify new samples. This process was carried out 5 times to obtain robust and non-576 

random discrimination models. 577 

For the European regulation models, the samples were divided into two classes: 578 

Class 1 (tuna samples with HIS concentration < 100 mg/kg) and Class 2 (tuna samples 579 

with HIS concentration > 100 mg/kg). Different pre-treatments were applied on the 580 

calibration set.  In particular, the SNV in combination with the first derivative Savitzky-581 

Golay with a 15 points window and quadratic polynomial fit was the best pre-treatment 582 

to the correct classification in a 10-fold-cross-validation. Table 2 shows the results 583 

obtained for PLS-DA, KNN and SVM. Sensitivity and specificity were used in order to 584 

evaluate the classification models. 585 

In machine learning algorithms, adjusting parameters is the algorithm's learning 586 

process. Consequently, identifying appropriate parameters is crucial for the outcome of 587 

each algorithm (Xia et al., 2023). The optimal number of latent variables in the PLS-DA 588 

model is determined by 10-fold cross-validation. However, when the number of latent 589 

variables reaches 10 or higher, there is no improvement in the classification accuracy of 590 

the PLS-DA model. At this point, when the LV was 4, the error rate was lowest. The PLS-591 

DA model provided a sensitivity and a specificity for both classes of 1, namely 100% 592 

classification accuracy (Table 2). The threshold for each class was obtained by using the 593 

Bayesian theorem and respective data. By means of five different models, it is correctly 594 

classified 14.6/15 samples of Class 1 and 29.8/30 samples of Class 2 (Table S5), while in 595 

external validation, 94.3% of the samples with a concentration of histamine below 100 596 

mg/kg were correctly classified (Class 1). In the SVM models, the radial basis function 597 

(RBF) was chosen as the core function where only two parameters need to be tuned: the 598 
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cost function and the kernel parameter. To optimize these two hyperparameters, the most 599 

accurate values in the 10-fold cross-validation were selected to avoid overfitting and to 600 

obtain a good accuracy rate.   For the five different models, the cost function value was 601 

100, while the kernel parameters were 1, 0.01, 0.032, 0.01 and 3.16. As seen in Table 2, 602 

all samples were correctly classified (100%) by SVM in the calibration set. On the other 603 

hand, in the 10-fold cross-validation, 97.1 % of samples below 100 mg/kg were well-604 

classified. For external validation, the sensitivity and specificity values were 92.9% and 605 

98.2%, respectively. The classification of the Class 2 samples was worse using this model, 606 

where only 28.6/30 samples were classified correctly, as confirmed by the confusion 607 

matrix (Table S5). Thirdly, modelling using the KNN approach was carried out. In this 608 

study, 10-fold cross-validation was employed to ensure the K value. When the K value 609 

was 3, the highest accuracy was ensured. In terms of sensitivity and specificity for cross-610 

validation, the model showed values of 97.1% and 98.8%, respectively (Table 2). The 611 

best classification results in the training set were obtained using KNN model for FT-MIR 612 

data, giving 100 % sensitivity for the two different histamine concentrations (Table 2), 613 

indicating reliability and good generalization of the model data. Although the sensitivity 614 

of PLS-DA model was 94.3 % for the samples below 100 mg/kg of histamine (Class 1), 615 

it showed good predictability for unknown samples since none of the 15 samples that 616 

exceeded the 100 mg/kg threshold were misclassified by the confusion matrix (Table S5). 617 

 618 

The FDA regulation sets a stringent limit of 50 mg/kg for histamine in fish. To 619 

accommodate this stricter regulation, we categorised the samples into two classes for the 620 

classification models: Class 1 (comprising tuna samples with HIS concentration < 50 621 

mg/kg) and Class 2 (consisting of tuna samples with HIS concentration > 50 mg/kg). The 622 

optimal number of latent variables in the PLS-DA model was 3 and the optimum cost 623 

function value for the five SVM models was 10, while the kernel parameters were 0.01, 624 

0.01, 0.032, 0.01 and 1. In KNN, the highest accuracy was ensured with a value of K=3. 625 

Table 3 shows the data obtained for the three calibration models. Regarding sensitivity 626 

and specificity in 10-fold cross-validation, the following results were obtained: 94% and 627 

93.7% for the PLS-DA model; 90% and 98.3% for the SVM model; and 92% and 95.3% 628 

for the KNN model for Class 1. On the other hand, the prediction results obtained for the 629 

PLS-DA and KNN models indicated that 5.4 out of 6 samples were correctly classified 630 

as samples with histamine values below 50 mg/kg. In contrast, for the SVM model, only 631 

4.6 out of 6 samples were correctly classified (Table S6). 632 
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Furthermore, due to the validation set having few samples, it is essential to 633 

determine whether the model's predictions stem from a genuine reliance on the spectral 634 

data or are merely the outcome of random chance. To address this, we employed a 635 

permutation test with 200 iterations to validate the significance of the three models' 636 

predictions for self-prediction. As indicated by the Wilcoxon, Sign Test, and Rand t-test 637 

values, the models exhibited statistically significant differences (p < 0.05) (Table S7 and 638 

S8). Consequently, we can confidently conclude that the models yield dependable 639 

predictions that are inherently linked to the underlying structure of the data, rather than 640 

being a product of chance (Brereton, 2006; Kjeldahl and Bro, 2010). The models 641 

examined in this research effectively categorised tuna samples that fail to meet the 642 

maximum histamine limits set by EU and US-FDA regulations in a quick and non-643 

destructive manner. They can be used to guarantee that enterprises acquire tuna of the 644 

required quality, for both producers and consumers from a food safety perspective. 645 

In brief, the predictive performance of the KNN model was superior to that of 646 

PLS-DA and SVM for both regulations. This arises from the nature of the KNN 647 

algorithm, which operates as a supervised learning method, incorporating all data during 648 

each training phase to determine the most effective model. Typically, this method yields 649 

to good results in scenarios where there are small differences among samples within the 650 

same group (Zhao et al., 2010). Additionally, KNN is robust against data variability and 651 

has few hyperparameters to optimize, unlike SVM. 652 

 653 

4. Conclusions 654 

In this paper, the histamine content in yellowfin tuna was analyzed by HPLC-655 

DAD. This amine showed an increasing trend with the increase in the incubation period, 656 

attributed to higher bacterial growth and enzyme activity that accelerate the 657 

decarboxylation of amino acids. The current research highlights the great potential to 658 

improve the estimation of the histamine level using FT-MIR spectroscopy, particularly 659 

when employing appropriate spectral pre-processing techniques and chemometric 660 

methods. In general, the PLSR models proved to be robust. Better results were achieved 661 

by employing SNV with First Derivate Savitzky-Golay pre-processing, leading to 662 

decreased errors in predicting histamine content. 663 
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The regulation of histamine levels in tuna is highly relevant, especially in the 664 

context of food poisoning outbreaks. To address this concern, three classification models 665 

(PLS-DA, SVM, and KNN) were applied to distinguish tuna samples surpassing 666 

threshold limits established by EU and US-FDA regulations. The results obtained 667 

underscore the feasibility of using FT-MIR spectroscopy combined with multivariate 668 

analysis for rapid and non-destructive safety inspections. This technology serves as a vital 669 

and expeditious complement to the reference HPLC-DAD method in the industry. Future 670 

research should concentrate on validating the transferability of models to portable devices 671 

for on-site and real-time screening. Additionally, collecting more representative samples 672 

annually to update the database and enhance model robustness should be a focus of future 673 

work. The results supported that machine learning models could enhance the prediction 674 

performance compared to traditional modelling. These machine learning approaches were 675 

validated, including internal 10- fold cross-validation and external independent 676 

validation. Following cross-validation, the KNN model yielded the highest classification, 677 

achieving a 100% classification accuracy during external validation, according to EU 678 

Regulation. 679 

Subsequent works should focus on confirming the adaptability of the models for 680 

on-site and real-time screening on portable devices.  Moreover, there is a need to collect 681 

more diverse samples annually to continually update the database and strengthen the 682 

models' reliability. 683 
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Figure 2.  Boxplot analysis of the histamine levels (mg/kg) in tuna fillets during the 1117 

incubation period (10 days) at 22 ± 2 ºC. Data are expressed as mean ± standard deviation.  1118 

Figure 3. Principal Component Analyses of the FT-MIR spectra of tuna samples: (a) 1119 

Score plot; (b) Loading plot 1120 

Figure 4. Partial Least Square Regression (PLSR) cross-validation models for histamine 1121 

levels, including (a) Model 1, (b) Model 2 and (c) Model 3. 1122 
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Table 1. Histamine content of the different tuna samples analyzed by HPLC-DAD in 

the ranges and models established.  

 

ID Histamine level (mg/kg) Nº of samples Min Max 

1 < 50 16 n.d. 40.89 

2 50 – 100 5 50.51 68.92 

3 100 – 200 13 100.68 194.75 

4 200 – 300 9 207.34 275.02 

5 300 – 500 11 307.14 475.09 

6 500 – 700 8 506.03 687.03 

7 700 – 1000 4 761.60 879.73 

FDA model < 50 16 n.d. 40.89 

 > 50 50 50.51 879.73 

EU model < 100 21 n.d. 95.85 

 > 100 45 100.68 879.73 

Min=minimum; Max= maximum; n.d. =not detected. 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



Table 2.  Sensitivity and specificity (%) for the classification models in calibration, cross-validation and prediction of histamine.  

 

 

Table 3. Sensitivity and specificity (%) for the classification models in calibration, cross-validation and prediction of histamine. 

 

EU Regulation 
 

PLS-DA  SVM  KNN  

 
 < 100 mg/kg > 100 mg/kg < 100 mg/kg > 100 mg/kg < 100 mg/kg > 100 mg/kg 

Calibration 
Sensitivity (%) 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 

Specificity (%) 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 

Cross-Validation 
Sensitivity (%) 97.1 ± 1.8 98.8 ± 1.2 97.1 ± 1.8 95.3 ± 1.7 97.1 ± 1.8 98.8 ± 1.2 

Specificity (%) 98.8 ± 1.2 97.1 ± 1.8 95.3 ± 1.7 97.1 ± 1.8 98.8 ± 1.2 97.1 ± 1.8 

Prediction 
Sensitivity (%) 94.3 ± 0.6 100 ± 0.0 92.9 ± 6.4 98.2 ± 1.6 100 ± 0.0 100 ± 0.0 

Specificity (%) 100 ± 0.0 94.3 ± 0.6 98.2 ± 1.6 92.9 ± 6.4 100 ± 0.0 100 ± 0.0 

FDA regulation  PLS-DA  SVM  KNN  

 
 < 50 mg/kg > 50 mg/kg < 50 mg/kg > 50 mg/kg < 50 mg/kg > 50 mg/kg 

Calibration 
Sensitivity (%) 100 ± 0.0 93.0 ± 1.1 84.1 ± 4.5 99.4 ± 0.6 100 ± 0.0 100 ± 0.0 

Specificity (%) 93.0 ± 1.1 100 ± 0.0 99.4 ± 0.6 84.1 ± 4.5 100 ± 0.0 100 ± 0.0 

Cross-Validation 
Sensitivity (%) 94.0 ± 2.4 93.7 ± 1.7 90.0 ± 4.5 98.3 ± 0.7 92.0 ± 3.7 95.3 ± 0.8 

Specificity (%) 93.7 ± 1.7 94.0 ± 2.4 98.3 ± 0.7 90.0 ± 4.5 96.5 ± 0.8 90.8 ± 3.7 

Prediction 
Sensitivity (%) 89.9 ± 6.6 95.9 ± 2.7 76.6 ± 4.1 98.7 ± 1.3 89.9 ± 4.1 97.3 ± 2.7 

Specificity (%) 95.9 ± 2.7 89.9 ± 6.6 98.7 ± 1.3 76.6 ± 4.1 97.3 ± 2.7 89.9 ± 4.1 
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HIGHLIGHTS 

 

• Models created analyzing FT-MIR spectra with machine learning algorithms. 

• The best spectral pre-processing technique was the combination of SNV + 

Savitzky-Golay derivative. 

• FT-MIR was used to discriminate tuna samples according to their histamine 

concentration. 

• Contribution to improving quality control and safety inspections in the industry. 
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