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A B S T R A C T

Among the severe foodborne illnesses, listeriosis resulting from the pathogen Listeria monocytogenes exhibits one
of the highest fatality rates. This study investigated the application of near infrared hyperspectral imaging (NIR-
HSI) for the classification of three L. monocytogenes serotypes namely serotype 4b, 1/2a and 1/2c. The bacteria
were cultured on Brain Heart Infusion agar, and NIR hyperspectral images were captured in the spectral range
900–2500 nm. Different pre-processing methods were applied to the raw spectra and principal component analy-
sis was used for data exploration. Classification was achieved with partial least squares discriminant analysis
(PLS-DA). The PLS-DA results revealed classification accuracies exceeding 80 % for all the bacterial serotypes for
both training and test set data. Based on validation data, sensitivity values for L. monocytogenes serotype 4b, 1/2a
and 1/2c were 0.69, 0.80 and 0.98, respectively when using full wavelength data. The reduced wavelength
model had sensitivity values of 0.65, 0.85 and 0.98 for serotype 4b, 1/2a and 1/2c, respectively. The most rele-
vant bands for serotype discrimination were identified to be around 1490 nm and 1580–1690 nm based on both
principal component loadings and variable importance in projection scores. The outcomes of this study demon-
strate the feasibility of utilizing NIR-HSI for detecting and classifying L. monocytogenes serotypes on growth me-
dia.

1. Introduction

The World Health Organization reports that bacterial pathogens ac-
count for over 30 % of all foodborne illnesses globally [1]. In Africa
alone, approximately 92 million people suffer from foodborne illnesses
resulting in nearly 137 000 deaths annually [2,3]. Listeria monocyto-
genes is one example of pathogenic bacteria commonly found in ready-
to-eat foods such as cooked ham, polony, vegetables, soft cheese, and
raw milk [4,5]. Cases resulting from L. monocytogenes infections are low
as compared to other pathogenic bacteria such as Escherichia coli and
Salmonella spp. However, the mortality rate of listeriosis (the disease
caused by L. monocytogenes) can reach up to 30 %, with the elderly,
pregnant individuals and immune compromised people being primarily
at risk [6].

L. monocytogenes, a rod shaped, Gram-positive bacterial pathogen is
one of seventeen species within the genus Listeria. According to Orsi
and Wiedmann [7], L. monocytogenes has thirteen serotypes which are
classified into lineages I-IV. Lineage I isolates, specifically serotypes 1/

2b and 4b have been attributed to most human cases of listeriosis [8,
9]. Nevertheless, isolates from lineage II (serotypes 1/2a and 1/2c)
also play a role in listeriosis, with serotype 1/2a being more prevalent
in hospitalisation cases [10]. According to Poimenidou et al. [11],
serotype 1/2a strains are usually isolated from food and food environ-
ments whilst serotype 4b strains arises from various sources including
soil and water. Previous research has proven that under appropriate
environmental conditions, it is possible for L. monocytogenes serotypes
1/2a, 1/2b, 1/2c, and 4b to coexist in food factories [12]. For exam-
ple, a study on fresh seafood samples across supermarkets in Iran
found that serotypes 1/2a, 1/2b, and 4b were all present in fish and
shrimp samples investigated [13]. The bacterium can survive extreme
temperatures (1–45 °C) and wide pH ranges (4.5–9.0), making it a ro-
bust food pathogen [14]. Thus, it is important to detect this bacterial
contaminant using fast and efficient methods to prevent outbreaks and
product recalls.

Various methods have been developed over the years, with the aim
of detecting specific food pathogens more rapidly and accurately. The

⁎ Corresponding author.
E-mail address: pauljw@sun.ac.za (P.J. Williams).

https://doi.org/10.1016/j.saa.2024.124579
Received 29 February 2024; Received in revised form 27 May 2024; Accepted 30 May 2024
1386-1425/© 20XX

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.

https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579
https://www.sciencedirect.com/science/journal/13861425
https://www.elsevier.com/locate/saa
mailto:pauljw@sun.ac.za
https://doi.org/10.1016/j.saa.2024.124579
https://doi.org/10.1016/j.saa.2024.124579


CO
RR

EC
TE

D
PR

OO
F

R.T. Matenda et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy xxx (xxxx) 124579

Fig. 1. Digital images of Listeria serotypes streaked onto BHI agar (from left) L. monocytogenes 4b, L. monocytogenes 1/2a and L. monocytogenes 1/2c (Samsung A31;
1080 x 2400 pixels).

most common types of methods include nucleic acid-based and im-
munological based methods [15]. Both polymerase chain reaction
(PCR) and enzyme-linked immuno-sorbent assay (ELISA) are good ex-
amples of methods proven to improve accuracy and the time it takes for
a laboratory to process a sample and provide the results (turn-around
time). However, these methods still require at least two hours before re-
sults can be obtained which makes them unsuitable for automation
[16]. Considering such limitations, it is highly desirable to develop non-
contact, rapid methods for bacterial analysis.

The use of visible (VIS) and near infrared (NIR) spectroscopy has
also been previously explored for bacterial analysis with high success
[17,18]. Feng et al. [19], investigated the use of visible/NIR spectro-
scopic data to detect and differentiate between various E. coli and L. in-
nocua strains. The results showed that the application of least squares
support vector machines (LS-SVM) resulted in classification accuracies
of above 85 %. In addition, due to improvements and advancements in
technology, the use of other rapid methods of analysis like hyperspec-
tral imaging (HSI) have been investigated. HSI is a robust technique
which has proven to be successful in the detection and classification of
pathogens on various foods and nutrient rich media [20–22]. The tech-
nique combines spatial and spectral data, providing detailed spectral
information for each captured pixel. By analysing the spectral data col-
lected through NIR-HSI, accurate classification and identification of
multiple bacteria species within a single food sample can be achieved. It
has been proven that, when using HSI, bacterial classification is based
on differences in the cell wall’s chemical composition of the different
bacterial species and serogroups at selective wavelengths [23,24]. For
instance, in one study, differences in protein content were used to dis-
tinguish between two lactic acid bacterial species in cooked ham sam-
ples [25]. The technology is particularly valuable for tasks that require
fine discrimination between materials based on their spectral character-
istics.

Yoon et al. [26], investigated the use of visible/ near infrared
(400–1000 nm) hyperspectral imaging to identify six different E. coli
serotypes on rainbow agar using principal component analysis, Maha-
lanobis distance (PCA-MD) and PCA, k-nearest neighbours (PCA-KNN).
Both approaches achieved a classification accuracy of above 84 % for
all serogroups. However, it is important to note the impact of data pre-
processing. Different pre-processing techniques were employed, and
the results showed that models pre-processed with SNVD (standard nor-
mal variant and detrending) were superior compared to others investi-
gated. In another study, researchers used HSI in the NIR region
(1000–2500 nm) to classify Staphylococcus aureus and S. epidermidis at
strain level on solid Luria-Bertani agar [20]. The authors used partial
least discriminant analysis (PLS-DA) and results showed classification
accuracies of above 90 % despite the spectral similarities.

Advancements in chemometrics has also led to substantial enhance-
ments in predictive modelling through the utilization of variable selec-
tion algorithms and combined classification algorithms. A study by
Feng et al. [24] used NIR-HSI for classification of different bacterial
species on the same media (i.e., Tryptone Soy Agar) in the wavelength
range 400–1000 nm. PLS-DA was compared to an optimized support
vector machine (SVM) model. The SVM model was optimized with the
invasive weed algorithm to yield invasive weed optimization support
vector machines (IWO-SVM) aimed at improving the model’s accuracy.
Various variable selection methods such as genetic algorithm (GA), suc-
cessive projection algorithm (SPA) and competitive adaptive
reweighted sampling (CARS) were used to select important spectral
bands. Despite the different variable selection techniques, the results il-
lustrated that the PLS-DA models performed poorly when compared to
the SVM models. The overall correct classification accuracies (OCCRs)
were 41 % and 91 % for PLS-DA and IWO-SVM, respectively. This indi-
cated that PLS-DA (in that study) was not suitable for the classification
of the bacterial strains investigated. Gu et al. [27] adopted a more uni-
versal approach with the specific aim of investigating the feasibility of
distinguishing between pathogenic bacteria, including E. coli, S. aureus,
and Salmonella, cultured on different agar media, using a single model
approach. Three wavelength selection techniques were used in conjunc-
tion with PLS-DA and optimized SVM (Grasshopper optimisation algo-
rithm-SVM (GOA-SVM)) algorithms. Results also demonstrated poor
performances of OCCRs for PLS-DA models suggesting that linear mod-
els might not be suitable when dealing with cases of closely related bac-
teria. However, GOA-SVM performed well with OCCRs of above 98 %
for both calibration and prediction sets.

The aforementioned studies show that NIR-HSI together with
chemometric techniques is successful in detecting and predicting bacte-
ria species/serotypes. This functionality positions NIR-HSI as a promis-
ing tool for enhancing food safety monitoring and quality control in the
food industry, as it enables rapid and reliable detection of potential mi-
crobial contaminants. However, few have investigated bacteria from
the same species. Hence, the aim of this study was to investigate the ap-
plication of NIR-HSI for the potential prediction of three L. monocyto-
genes serotypes 4b, 1/2a and 1/2c on solid media.

2. Materials and methods

2.1. Bacterial culture and sample preparation

Three L. monocytogenes serotypes were investigated, including one
from lineage I (L. monocytogenes 4b (ATCC 23074) and two from lineage
II (L. monocytogenes 1/2c (ATCC 7644) and L. monocytogenes 1/2a
(ATCC 19111)). All bacterial cultures were obtained in lyophilized form
from Davies Diagnostics, South Africa, and resuspended as per the man-
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Fig. 2. (a1&a2) PC1 score image of L. monocytogenes colonies and BHI agar and the corresponding principal component analysis score plot showing PC1 and PC2.
These were used iteratively to select the regions of interest (i.e., the bacteria). (b) The resultant PC1 score image of L. monocytogenes.

Table 1
Calibration and validation set sizes for pixel-wise analysis based on the num-
ber of spectra.

L. monocytogenes
4b

L.
monocytogenes
1/2a

L. monocytogenes
1/2c

Total

Calibration 3432 3074 3148 9654
Validation 2525 2749 2416 7690
Total 5957 5823 5564 17,344

ufacturer’s instructions. Cultures were stored in skim milk tryptone glu-
cose glycerin (STGG) tubes (National Health Laboratory Service, Green-
point) at −80 ⁰C until needed. Brain Heart Infusion (BHI) (Oxoid,
United Kingdom) agar (a general-purpose growth medium, specific for
fastidious organisms) was used throughout the study for uniformity and
minimization of spectral variation from the growth media. To account
for colony concentration variations, the streaking method was used,
which allowed for single colonies as well as larger areas of confluent
growth.

From STGG, a loopful (˃1 µl) of individual stock culture was
streaked onto BHI agar under aseptic conditions in a class II biosafety
cabinet. For optimum microbial growth, the petri dishes/plates were
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Fig. 3. (a) The original raw absorbance spectra of bacterial colonies of L. monocytogenes serotype 4b (red), serotype 1/2a (green) and serotype 1/2c (blue). (b) Sav-
itzky Golay (1st derivative 2nd polynomial 11-point smoothing) pre-processed spectra. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

thereafter incubated at 37 ⁰C for 24 h. As a precaution, this process was
repeated to ensure the viability and purity of the bacteria [28]. There-
after, petri dishes were prepared in duplicate for each L. monocytogenes
serotype by taking a single colony of the bacteria from the incubated
plates. The bacteria were streaked onto BHI and incubated for 22 ± 1 h
at 37 ⁰C (Fig. 1). Prior to hyperspectral imaging, the plates were al-
lowed to cool down to ambient temperature (approximately 21 ⁰C) for
15 min. This procedure was considered as the first experiment (Rep 1).

The protocol was repeated, resulting in replicate samples (Rep 2) and
an overall total of 12 petri dishes.

2.2. NIR-HSI imaging system and image acquisition

NIR hyperspectral images were acquired in an air-conditioned room
set at 21 ⁰C using a line scan HySpex SWIR 384 (short wave infrared)
camera (Norsk Elektro Optikk (NEO), Norway). The HSI system com-
prised of a spectrograph, translation stage, a mercury-cadmium-
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Fig. 4. (a) Principal component analysis score plot of PC1 and PC3 contributing 69% of total variance for L. monocytogenes serotype 4b (red), 1/2a (green) and 1/2c
(blue) with minimal separation observed. (b) Corresponding PC1 and PC3 loading line plots. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

telluride (HgCdTe) detector, combined with a computer equipped with
Breeze software version 2021.1.5 (Prediktera, AB, Umeå, Sweden). Two
150 W halogen lamps (Ushio lighting Inc., Japan) were placed at a 45⁰
angle to illuminate the sample. The petri dishes of 100 mm diameter
were imaged with the lid opened on a white ceramic tile. The transla-
tion stage on which petri dishes were placed moved at a speed of
50 mm/s under the camera equipped with a 30 cm focal length lens.
The distance between the samples and the lens was approximately
25 cm. The instrument had a field of view of 95 mm and a spatial reso-

lution of 310 µm. The images were recorded in the 953–2500 nm wave-
length range with a spectral resolution of 5.45 nm.

2.3. Hyperspectral image analysis

Hyperspectral images were analysed using Evince v.2.7.0 (Predik-
tera AB, Umeå, Sweden). Prior to image acquisition, a dark reference
(0 % reflectance, camera shutter closed) and a grey reference (50 % re-
flectance) image was collected by scanning the grey Zenith Allucore dif-
fuse reflectance standard (SphereOptics GmbH, Germany). The 50 %
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Table 2
Performance of the PLS-DA models used to distinguish between the three L. monocytogenes serotypes using different pre-processing techniques.

Cross-validation Prediction

Preprocessing Number of LV Accuracy
%

Sensitivity Specificity Accuracy
%

Sensitivity Specificity

None 6 68 0.99 0.99 68 0.68 0.84
SNV 6 96 0.96 0.98 85 0.85 0.92
MSC 7 96 0.96 0.98 85 0.85 0.92
1D 6 98 0.98 0.99 74 0.74 0.87
2D 8 91 0.91 0.95 76 0.76 0.88
SNV1D 5 94 0.95 0.97 82 0.82 0.91
MSC1D 6 94 0.94 0.97 81 0.81 0.90
SNV2D 9 87 0.87 0.93 81 0.82 0.90
MSC2D 9 88 0.88 0.94 87 0.87 0.93

Table 3
The pixel wise confusion matrix of the PLS-DA model for cross-validation and
prediction with respect to the differentiation of L. monocytogenes serotypes.

L.
monocytogenes
4b

L.
monocytogenes
1/2a

L.
monocytogenes
1/2c

OCCR
(%)

Cross-validation
(n = 9654 pixels)

94

L. monocytogenes 4b 3165 94 111
L. monocytogenes

1/2a
93 2974 13

L. monocytogenes
1/2c

174 6 3024

Validation
(n = 7690 pixels)

82

L. monocytogenes 4b 1756 545 46
L. monocytogenes

1/2a
6 2195 0

L. monocytogenes
1/2c

763 9 2370

Table 4
Performance indices of selected PLS-DA model indicating its ability to predict
Listeria serotypes.

Serotype classes

L. monocytogenes
4b

L. monocytogenes
1/2a

L. monocytogenes
1/2c

Cross-validation
Specificity 0.98 0.98 0.97
Sensitivity 0.92 0.97 0.96
Classification Error

(%)
5 2 3

Validation
Specificity 0.88 0.99 0.85
Sensitivity 0.69 0.80 0.98
Classification Error

(%)
18 7 11

grey standard allowed for longer integration times allowing for im-
proved signal to noise ratio. Furthermore, the calculated reflectance
values of the samples have been shown to not differ significantly when
using the 50 % (grey) instead of the 99 % (white) reflectance standard
[29,30]. Following image acquisition, the spectra were converted from
reflectance to pseudo absorbance. The Evince software was used to cali-
brate and correct images according to equation (1).

(1)

In the reorganized hypercube, represents the pixel index variable
( = 1…N). Cλ represents the corrected absorbance image of pixel at
wavelength λ. Rλ represents the sample image of pixel at wavelength

λ. Bλ represents the dark reference image of pixel at wavelength λ. Gλ
represents the grey reference image of pixel at wavelength λ.

2.4. Data analysis

2.4.1. Region of interest identification and data extraction
Isolation of the region of interests (bacterial colonies) was achieved

by removing unwanted pixels such as the background, agar, and shad-
ows from each individual image. This was done using a PCA model,
which was calculated on mean centered data with six principal compo-
nents. The score plots were used to visualize clustering of the different
spectral information [31]. The brushing technique was used for re-
moval of unwanted pixels[20,32]. The technique involves eliminating
clusters in the score images corresponding to undesired information,
followed by recalculating the PCA. The process is repeated iteratively
until all undesired information is eliminated, while maintaining the
necessary information (Fig. 2). Once the images had been cleaned, spec-
tral data was extracted for analysis in MATLAB R2022b (The Math-
Works, MA, USA) and PLS Toolbox version 9.2 (Eigenvector Technolo-
gies, USA).

2.4.2. Exploratory and pre-process analysis
Principal component analysis (PCA) was employed for exploratory

data analysis and interpretation. PCA is a dimensionality reduction
technique which extracts the most valuable information from multidi-
mensional data [33]. In situations where data points or features exhibit
redundancy or unclear separation, PCA creates orthogonal components
that effectively reduce this overlap, making it easier to identify and un-
derstand patterns within the data. After inspecting the spectra, wave-
lengths between 2100 and 2500 nm were excluded as these were noisy.
For the enhancement of spectral signals and reduction of noise, differ-
ent pre-processing methods were investigated. Standard normal variate
(SNV) was applied to correct light scattering effects and baseline off-
sets. To achieve this, spectral datasets are scaled to have a mean of zero
and a standard deviation of one for each wavelength [34]. The treat-
ment was followed by Savitzky-Golay (SG) 1st derivative smoothing fil-
ter, 2nd order polynomial, 11-point smoothing, aimed at reducing spec-
tral noise. According to Savitzky and Golay [35], the SG algorithm
achieves data smoothing through the minimization of the least squares
polynomial approximation, thus improving precision, and making data
much easier to analyse and interpret Evaluation of score plots, score im-
ages, and loading line plots of pixel data was conducted to investigate
potential differences between the bacteria.

2.5. Discriminant analysis

PLS-DA, a supervised linear discriminant technique, was used to
build predictive models for the classification of the three L. monocyto-
genes serotypes. The algorithm works by obtaining latent variables that
are linear combinations of the original predictor variables [36]. Choos-
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Fig. 5. VIP scores for L. monocytogenes serotypes showing important peaks at 1127 nm, 1328 nm, 1415 nm, 1490 nm, 1580 nm, 1660 nm, 1698 nm, and 1747 nm.

ing these latent variables maximizes the covariance between predictor
variables and class labels. Based on the predictor variables, new obser-
vations can then be categorized into predefined groups [37]. In this
study, the pixel-wise analysis method was explored. Each pixel was re-
garded as a sample, hence contributing a single spectrum. Due to the
large amount of pixels involved in pixel-wise analysis, using an external
set for validation is highly recommended and is easily obtainable [38].
Hence, the petri dishes obtained from the first experiment (Rep 1) were
chosen as the calibration set (train set) and those from the second ex-
periment (Rep 2) as the validation set (test set). The calibration set used
to train and perform cross-validation consisted of spectra from 9 654
pixels, whilst the test set used for validation had spectra from 7 690 pix-
els. Table 1 shows the composition of the data set.

Due to the complexity of the data and the risk of model overfitting,
cross-validation (CV) was necessary [36]. The venetian blind method
was applied with 10 data splits. In this method, the data set is first di-
vided into equal sized folds (k) and at each iteration one is used as the
test set while the remaining k-1 folds are used as the training set [39].
The method is suitable for large data sets arranged in a random order
and for assessing predictability within batches. The number of latent
variables was chosen by considering both the calibration (CAL) and CV
classification average error. The latent variable with the minimum er-
ror rate supports the model’s predictive performance or accuracy and is
less prone to overfitting.

There are several parameters that can be used to assess a classifica-
tion model’s performance, including but not limited to efficiency,
Matthew's correlation coefficient, accuracy, and classification error
[36,40]. However, in this study, classification error, specificity, sensi-
tivity, and classification accuracy were used. A model’s classification
accuracy illustrates the model’s overall performance. This is calculated
by dividing the number of correctly classified objects by the total num-
ber of predictions (Equation 2), [41]. However, it is worth noting that
classification accuracy should not be regarded as the sole determinant
of performance. It is conceivable to achieve a reasonably high classifi-
cation accuracy and yet fail to correctly identify the target class. Hence,
models often evaluate other parameters such as sensitivity and speci-
ficity. The sensitivity of a model measures its ability to accurately as-
sign objects to their respective classes. Specificity on the other hand in-
dicates how well a model detects the number of samples that are cor-
rectly predicted to the negative class (true negatives). Sensitivity and
specificity values above 0.8 are generally considered good however, the

optimal values may vary depending on the specific requirements of the
test [42].

(Equation 2)

2.6. Variable selection

The process of model building involves assessing and selecting the
most relevant variables, which play a crucial role on the model’s ability
to better capture patterns and relationships within the data. Using vari-
able selection methods contribute to enhancement of the model's per-
formance, by effectively reducing noise caused by irrelevant features
[43]. Hence, variable importance in projection (VIP) scores were evalu-
ated to determine the wavebands most important for classifying the L.
monocytogenes serotypes. In a PLS-DA model, VIP scores are computed
by assessing the contribution of each predictor variable to the separa-
tion of the classes in the model [44]. To achieve this, one must consider
the correlation between predictor variables and compare the amount of
variance explained by the variable in question to the overall amount of
variance in the model. In general, variables with VIP score values
greater than 1 are considered important for the model’s performance
[45,46]. Equation (3) illustrates the mathematical computation.

(3)

where:
VIPa = VIP score for variable a,
c = number of components of the pls model,
v = the number of response variables,
wak = weight of variable a in component k,
tsa = the score of sample s on component a,
SSY = total sum of squares of the response variables.

7
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Fig. 6. Graphical representation of the variables selected using variable impor-
tance in projection feature selection.

3. Results and discussion

3.1. NIR spectra

The raw absorbance spectra of the three L. monocytogenes serotypes
grown on BHI agar, are shown in Fig. 3. The spectral profiles displayed
a relative similarity (in shape), but with notable differences in the
wavelength range 1100–1800 nm. Considering Fig. 3a, in the wave-
length range 1395 to 1410 nm, there seems to be high absorbance val-
ues which could be a resultant of O–H stretch overtones or C–H combi-
nation stretching likely from water or sugars, respectively [47]. There
were also considerable peaks at 1154 and 1682 nm, however informa-
tion from the raw spectra was insufficient to draw any meaningful con-
clusions, hence the need to pre-process spectral data. The inadequacy to
capture interpretable, detailed spectral information is often attributed
to the negative impact of both light scattering and spectral noise on NIR
radiation [48]. To minimise these effects, spectral data was subjected to
SNV and S.G smoothing treatment 2nd order polynomial, 1st derivative
11-point window both independently and in combination. When com-
paring the pre-processed spectra of SNV and SG in combination versus
the spectra with only the SG 1st derivative, no noticeable differences
were observed. Hence information derived from the first derivative will
be discussed. Overall, Fig. 3b shows more detail highlighting the effec-
tiveness of pre-processing on spectral data.

Fig. 3b shows wavebands 1018 nm, 1127 nm, and 1370 nm resul-
tant from N-H, C–H stretch second overtone and a combination of C–H
deformation and C–H-stretching respectively, all associated with
amino sugars [49,50]. A prominent peak at 1370 nm is due to a com-
bination C–H stretch. The wave band 1530 nm and 1580 nm are due
to O–H 1st overtone intermolecular bond known to be associated with
carbohydrates and simple sugars [51]. Wavebands 1660 nm, 1698 nm
and 1747 nm are resultant of C–H stretching first overtone mostly as-
sociated with hydrocarbons which could be monosaccharides or fatty
acids [52]. Upon further investigation, the spectra of L. monocytogenes
serotypes 1/2a and 1/2c appear similar, indicating a strong relation-
ship between the two serotypes. The spectra of serotype 4b is slightly
different from the other two suggestive that there are differences be-
tween the two lineage groups. The differentiation of L. monocytogenes
into lineages is based on the presence of unique genomic segments
that are specific to each lineage [53]. Both L. monocytogenes serotypes
1/2a and 1/2c belong to lineage II and have similar O-antigens which
are potentially different from serotype 4b, explaining the patterns ob-

served [54,55]. The minor structural variations of peptidoglycan wall-
teichoic acids (WTAs) and specific glycosylation patterns define O-
antigens responsible for serotyping [55]. According to Kamisango et
al. [56], the genetic differences in L. monocytogenes lineages can affect
the composition and structure of the cell wall. Previous studies have
shown that L. monocytogenes serotype 4b teichoic acid structures have
more galactose when compared with serotypes 1/2a and 1/2c [57,
58]. Hence suggesting that the dissimilarities between the three
serotypes primarily arose from variations in carbohydrates within the
bacterial cell wall. However, given that all three serotypes stem from
the same bacterial species, a similar shape of the spectra observed was
also expected.

3.2. PCA results

After evaluating different pre-processing algorithms, SNV and Sav-
itzky Golay 1st derivative, 2nd order polynomial 11-point smoothing
were applied. The resulting 2D score plot (Fig. 4a) with six principal
components, showed 62 % variation along PC1 and 7 % variation along
PC3. There are three clusters, with a clear separation between L. mono-
cytogenes 1/2a (green) and L. monocytogenes 1/2c (blue) along PC3. Ad-
ditionally, there is partial separation along PC1 between lineage I
(serotype 4b) and lineage II (serotype 1/2a and serotype 1/2c). The
lack of distinct boundaries between the three serotypes along PC1 and
PC3 implies a degree of similarity among them. This is consistent with
the similar spectra shape of the three serotypes observed (Fig. 3a).
However, the partial separation of all three serotypes along PC1 might
be resultant of variations within the structure of the cell wall [59].

The corresponding loadings for PC1 and PC3 are illustrated in Fig.
4b. The two loadings were examined to identify chemical information
contributing to the observed clustering. In the loading plots of PC1 and
PC3, a notable positive feature appears at 1360–1388 nm, indicating
the potential presence of hydrocarbons (C–H combination stretches).
This observation may be associated with the sugar content from both
the bacteria and agar. This variance contribution could explain the
overlap of the three serotypes as observed in the PCA score plots.

PC1 loading showed wavebands 1127 nm, 1328 nm,
1460–1490 nm, 1580 nm, 1660, 1698 nm, and 1747 nm as the major
contributors to the patterns observed in the score plots. The positively
loaded wavebands exhibited a stronger association with L. monocyto-
genes 4b pixels in comparison to L. monocytogenes 1/2a and 1/2c pixels.
Bands 1660, and 1747 nm can be ascribed to C–H stretching vibrations
and C–H bond first overtone respectively, arising from hydrocarbon
chains of sugars. Wavebands 1460–1490 nm cover a wide range N–H
1st overtone stretch and intramolecular O–H stretches. Variance contri-
bution could be from amino sugars and their interaction with water
molecules. The negatively loaded wavebands of PC1 include 1328 nm,
1580 nm, and 1698 nm. These demonstrated a more pronounced corre-
lation with L. monocytogenes 1/2a and 1/2c pixels compared to L. mono-
cytogenes 4b pixels. Waveband 1580 nm is strongly associated with the
vibrations of intermolecular O–H bonds [60]. This stretching vibration
is indicative of the presence of carbohydrates or differences in water
content in the cell walls of all three L. monocytogenes serotypes, attribut-
ing to the overlapping pixels observed in the PCA score plots.

Variance attributed to PC3, was associated with wavebands:
1127 nm, 1490 nm, 1660 nm, and 1698 nm. The loading plot sug-
gested that the main variation source for L. monocytogenes 1/2a was in
the wavelength range 1400–1800 nm. According to Barbin et al. [61],
bands at 1660 nm can be attributed to the presence of a C–H bond first
overtone from the CH3 group from the monosaccharides (sugars) in the
cell wall. Variance contribution from positively loaded wavebands
which include 1127 nm, 1698 nm are closely associated with a sym-
metrical N–H stretch (second overtone) and CONH2 respectively. These
potentially stem from amino groups within the cell wall [19,60]. Fur-
thermore, waveband 1360 nm can be attributed to the CH3 structure re-
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Table 5
Reduced wavelength PLS-DA model performance measures for the Listeria
serotypes.

Serotype classes

L. monocytogenes
4b

L. monocytogenes
1/2a

L. monocytogenes
1/2c

Cross −validation
Specificity 0.97 0.98 0.98
Sensitivity 0.93 0.96 0.98
Classification Error

(%)
4 3 2

Validation
Specificity 0.92 0.99 0.83
Sensitivity 0.65 0.85 0.98
Classification Error

(%)
17 5 12

sulting from both C–H stretch and C–H deformation bonds [51]. How-
ever, it is worth noting that since there still is minimal overlapping in
the score plots along PC3, all the resultant positive loading peaks might
potentially be from all serotypes. Additionally, the observed contribu-
tions could be resultant of other R-OH related bonds such as carbohy-
drates. Cell walls of Gram-positive bacteria contain chains of teichoic
acid that extend from the plasma membrane to the surface of the cell
wall through the peptidoglycan layer [62]. Hence, the peaks associated
with C–H and O–H stretches observed in the loadings can be explained
by the presence of sugars like glycerol or ribitol which are the main
components of teichoic acids. Furthermore, since the peptidoglycan
layer has covalently bonded surface proteins, this explains the peak at
1127 nm and 1490 nm which is suggestive of differences in protein
type between L. monocytogenes serotype 1/2a and 1/2c. Past research
on other Gram-positive bacteria like S. aureus has shown that differ-
ences in protein content among strains is possible [63,64]. However,
there is limited literature concerning L. monocytogenes serotypes, leav-
ing a gap worth further investigation.

The varying loadings at different wavelengths are indicative that
specific spectral regions can provide informative on distinguishing be-
tween different classes. However, it is also important to note that the
substrate (BHI agar) on which the bacteria grew could have contributed
to the overall spectral characteristics of the bacteria [65]. BHI agar con-
stitutes of glucose and peptone which could also have contributed to
some of the peaks observed. Nevertheless, the spectral characteristics of
the bacterial colonies including those influenced by the agar have been
proven to be successfully used in predictive model development [27].
Hence, to further validate the findings, PLS-DA was employed.

3.3. Classification results

3.3.1. Full wavelength PLS-DA model
A variety of pre-processing techniques were examined for optimal

PLS-DA model development. Ultimately, SNV and Savitzky Golay 1st
derivative 2nd polynomial 11-point smoothing yielded the best classifi-
cation results with the least number of latent variables (Table 2). Fur-
thermore, the Q residuals were also considered, with the pre-processing
technique with the lowest Q residual values being accepted. High Q
residual values indicate a large discrepancy between actual and pre-
dicted labels, resulting in a poor performing model [66]. To identify the
optimal number of latent variables to use in the model, the graphical
plot of classification error vs latent variable number was considered.
The optimal number of latent variables was determined by selecting the
point where the classification error rate is minimized or stabilised [67].
Hence, for optimum classification accuracy, 5 latent variables were
adopted. This choice resulted in a minimum average classification error
rate of 0.07, as increasing the number of latent variables beyond 6 did
not reduce the error rate.

Table 3 presents a confusion matrix that illustrates pixel-wise clas-
sification of the microbial classes. The PLS-DA model gave satisfactory
discrimination results, with overall correct classification rates of 94 %
and 82 % for cross-validation and external validation, respectively.
The performance indices of PLS-DA models, which indicate the mod-
el’s ability to accurately predict and classify unknown L. monocyto-
genes serotypes, are presented in Table 4. Cross-validation results re-
vealed high specificity values of 0.98, 0.98 and 0.97 for L. monocyto-
genes serotypes 4b, 1/2a, and 1/2c, respectively (Table 4). The mod-
el’s sensitivity was also high, with 0.97 and 0.96 for L. monocytogenes
serotypes 1/2a, and 1/2c, respectively. However, it is also important
to note that for L. monocytogenes 4b, the sensitivity value was 0.92
which was indicative that the model has difficulty identifying true 4b
serotypes. The classification error for the serotype 4b is also quite
high at 5 %, as compared with 2 % and 3 % for serotype 1/2a and 1/
2c, respectively.

Validation results also demonstrated a similar trend with L. monocy-
togenes 1/2a and L. monocytogenes 1/2c having high sensitivity values of
0.80 and 0.98 respectively. However, serotype 4b had a lower sensitiv-
ity value of 0.69. The results suggest that the model is able to correctly
identify the bacteria of choice (true positives, TP) better for lineage II
serotypes compared to lineage I (L. monocytogenes 4b). In addition, the
results also showed a high specificity value of 0.99 for L. monocytogenes
1/2a suggesting that the model can accurately predict the true nega-
tives (TN). However, the specificity values of L. monocytogenes 1/2c and
L. monocytogenes 4b were slightly lower, with 0.85 and 0.88 respec-
tively. This indicates that the model has difficulties identifying true
negatives and has a high number of false positives. Whether a sensitiv-
ity or specificity value is acceptable or not is dependent on the context
of the analysis and the goals of the study. However, generally, sensitiv-
ity and specificity values greater than 0.80 are considered good and
those below 0.70 considered poor [45,68]. In the food industry, a high
level of sensitivity is desired for pathogenic bacteria such as L. monocy-
togenes detection. Therefore, a sensitivity value of 0.69 is not consid-
ered good enough for adoption. Despite the model achieving an overall
classification accuracy of 82 % in the validation results, it is worth not-
ing that all serotypes exhibited classification errors exceeding 5 %. This
suggests that the model's performance in accurately classifying or pre-
dicting L. monocytogenes in new datasets, particularly in the case of L.
monocytogenes 4b, was suboptimal. In general, sensitivity and speci-
ficity values of above 0.90 and 0.95 respectively are acceptable for L.
monocytogenes detection methods [69].

3.4. VIP scores

VIP scores were employed to identify the wavebands that had the
highest influence on discrimination between the serotypes (Fig. 5). A
visual inspection showed that the wavelength region 1100–1800 nm
was important in modeling the three groups of bacteria. In the context
of the model, wavebands that possessed VIP scores greater than one
were considered significant [70]. The wavebands identified and se-
lected were 1127 nm, 1328 nm, 1415 nm, 1490 nm, 1580 nm,
1660 nm, 1698 nm, and 1747 nm. The wavebands 1490 nm, 1580 nm,
1660 nm, 1698 nm, and 1747 nm exhibited greater importance in dis-
tinguishing lineage II serotypes (1/2a and 1/2c) compared to lineage I
(4b) serotypes. On the contrary, wavelengths 1127 nm, 1328 nm and
1415 nm demonstrated to be more important for L. monocytogenes 4b. It
is noteworthy that the wavelengths selected were consistent with the
insights gained from the PC loadings, suggesting that separation be-
tween the serotypes was mainly based on variation in protein
(1490 nm) and carbohydrates (1580 and 1698 nm) content.

However, to get a more comprehensive assessment and to determine
if reduction in variables would optimise the model’s performance, an
in-house algorithm was applied to automatically select all variables
with a VIP score above 1. This selection yielded 89 variables (Fig. 6)
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Fig. 7. Prediction maps generated using the full wavelength partial least discriminant analysis model on hyperspectral images of: (a) L. monocytogenes 4b (red), (b)
L. monocytogenes 1/2a (green) and (c) L. monocytogenes 1/2c (blue) and the corresponding prediction results. Pixels classified as agar/background are represented in
black. The colour bar indicates the predicted class assignment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

which were then used to develop a reduced wavelength PLS-DA model.
Table 5 shows the performance measures for the Listeria serotypes.

The model's overall classification accuracy was 94 % and 82 % for
the cross validation and validation sets. Cross-validation results re-
vealed high specificity values of 0.97, 0.98 and 0.98 for L. monocyto-
genes serotypes 4b, 1/2a, and 1/2c, respectively. This was relatively
similar to the full wavelength results. The model’s sensitivity was also

high, with 0.93, 0.96 and 0.98 for L. monocytogenes serotypes 4b, 1/2a,
and 1/2c, respectively. The classification errors slightly improved for
serotype 4b and 1/2c with values of 4 %, and 2 %, respectively. The
classification error for serotype 1/2a increased to 3 %.

The validation results indicated a decline in the model's perfor-
mance when an independent test set was introduced. The sensitivity
value for serotype 4b was 0.65 while for serotype 1/2a, and 1/2c it was
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0.85 and 0.98 respectively. The specificity values were 0.92, 0.99 and
0.83 for serotype 4b, 1/2a and 1/2c, respectively. The low specificity
values for serotype 1/2c are indicative that the model has difficulties
identifying true negatives and has a high number of false positives.
Moreover, the classification errors for serotype 4b and 1/2c were high
at 17 % and 12 % respectively.

The performance of the reduced wavelength PLS-DA model did not
show a substantial improvement over the full wavelength model. When
comparing the results between the full wavelength range and the lim-
ited variable set, both scenarios yielded similar outcomes. The model
achieved an overall classification accuracy of 94 % and 82 % for cross-
validation data and validation data. This outcome suggests that the se-
lected subset is still capturing the essential information necessary for ef-
fective discrimination.

3.5. Prediction maps for L. Monocytogenes serotypes

One advantage of hyperspectral imaging over conventional spec-
troscopy is its ability to utilize spatial data, which allows for the genera-
tion of distribution maps to visualize spatial patterns. Prediction maps
are spatial representations generated through statistical or mathemati-
cal models, illustrating the predicted values of a variable investigated
[71]. By leveraging both the spatial and spectral information captured
across numerous wavelengths, these maps offer a comprehensive visu-
alization of model classification or predictions.

Fig. 7 shows prediction maps of the different L. monocytogenes
serotypes using the full wavelength PLS-DA model on validation data
hypercubes. These maps depict the predicted distributions across the
entire agar plates alongside their corresponding prediction results. A
linear colour scale from red to black on the right aids in interpreta-
tion. In these maps, class 1 (L. monocytogenes 4b) is depicted in red
(Fig. 7a); class 2 (L. monocytogenes 1/2a) appears in green (Fig. 7b),
and class 3 (L. monocytogenes 1/2c) is shown in blue (Fig. 7c). Class 4
(agar/ background) is represented in black.

Fig. 7b and 7c, depicting serotypes 1/2a and 1/2c in green and
blue, respectively, showcase accurate prediction with distinct colour
separation. This clarity suggests good model performance in identify-
ing these serotypes across the plates. However, the representation of
serotype 4b (red) appears less defined, with observed instances of mis-
classification as serotype 1/2c pixels (30 %). This discrepancy aligns
with the high misclassification rates and low sensitivity values docu-
mented in Table 4, suggesting weaker model performance in accurately
identifying serotype 4b.

4. Conclusion

In this study, NIR hyperspectral imaging was investigated for the de-
tection and classification of L. monocytogenes serotypes 1/2a, 1/2c and
4b. Pixel-wise analysis was adopted based on the ability to provide and
retain more spectral detail. Spectral results demonstrated minimum
variation, with the spectra obtained having a similar shape. This was
due to the related biological and serological properties of the L. monocy-
togenes serotypes. Loading plots revealed the contributions of individual
variables to specific components, while the score plots displayed partial
separation among serotypes. Notably, variables associated with amino
acids (1490 nm) and sugars (1580 nm) play a role in this separation.
Further investigation with PLS-DA showed feasible classification of the
serotypes. The full wavelength model had overall sensitivity, speci-
ficity, and classification accuracies above 0.87, 0.85, 80 % respectively.
While the reduced wavelength model had overall sensitivity, speci-
ficity, and classification accuracies of approximately 0.83, 0.90, 88 %
respectively. It is important to note that despite the relatively
favourable sensitivity and specificity values, these might not meet the
acceptable threshold for pathogenic bacteria detection as this typically
demands values above 90 %. However, considering the study's aim was

to evaluate the potential use of NIR-HSI for bacteria detection rather
than replacing existing methods, these results are acceptable. Based on
this perspective, it is recommended that this method be used as an early
detection system. The models developed could be integrated with tradi-
tional microbial assessment techniques to further confirm and give a
comprehensive assessment of bacterial identification and quantifica-
tion. In addition, further research should also include different growth
media and the application of other modelling chemometric tools to en-
sure a comprehensive assessment of serotype classification and a more
robust accurate model.

Ethical approval

This article does not contain any studies with human participants or
animals performed by any of the authors.

CRediT authorship contribution statement

Rumbidzai T. Matenda: Writing – original draft, Project ad-
ministration, Methodology, Formal analysis, Conceptualization. Di-
ane Rip: Writing – review & editing, Supervision, Methodology,
Conceptualization. J.A. Fernández Pierna: Writing – review &
editing, Supervision. Vincent Baeten: Writing – review & editing,
Supervision. Paul J. Williams: Writing – review & editing, Super-
vision, Project administration, Funding acquisition, Conceptualiza-
tion.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
[Paul James Williams reports financial support was provided by Na-
tional Research Foundation of South Africa. Rumbidzai T Matenda re-
ports financial support and travel were provided by South Africa De-
partment of Science and Innovation. If there are other authors, they de-
clare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.].

Data availability

Data will be made available on request.

Acknowledgments

This work is based on the research supported wholly / in part by the
National Research Foundation of South Africa (Grant Number:
137998). The authors would also like to acknowledge Nicaise Kayoka
Mukendi from the Walloon Agricultural research Centre (CRA-W) in
Gembloux, Belgium, for his assistance in data preparation and analysis.
The authors would also like to acknowledge the Department of Science
and Innovation (South Africa) in collaboration with the SensorFint Cost
Action 19145 for financial and training support. In addition, Stellen-
bosch University Postgraduate Scholarship Programme for their finan-
cial support to the student Rumbidzai T. Matenda.

References

[1] World Health Organisation, “WHO estimates of the global burden of foodborne
dieseases:foodborne diseases burden epidemiology reference group 2007-2015.”
pp. 1–1, 2015. doi: Doi: 10.1007/978-3-642-27769-6_3884-1.

[2] K. Z. Bisholo, S. Ghuman, and F. Haffejee, “Food-borne disease prevalence in
rural villages in the Eastern Cape, South Africa,” African J. Prim. Heal. Care Fam.
Med., vol. 10, no. 1, p. 5, 2018, [Online]. Available: https://phcfm.org/index.php/
phcfm/article/view/1796/2825.

[3] E. Abebe, G. Gugsa, M. Ahmed, Review on Major Food-Borne Zoonotic Bacterial
Pathogens, J. Trop. Med. 2020 (2020), https://doi.org/10.1155/2020/4674235.

[4] J. Thomas, et al., Outbreak of Listeriosis in South Africa Associated with

11

https://phcfm.org/index.php/phcfm/article/view/1796/2825
https://phcfm.org/index.php/phcfm/article/view/1796/2825
https://doi.org/10.1155/2020/4674235


CO
RR

EC
TE

D
PR

OO
F

R.T. Matenda et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy xxx (xxxx) 124579

Processed Meat, N. Engl. J. Med. 382 (7) (2020) 632–643, https://doi.org/
10.1056/nejmoa1907462.

[5] J. Lundén, R. Tolvanen, H. Korkeala, Human listeriosis outbreaks linked to dairy
products in Europe, J. Dairy Sci. 87 (SUPPL. 1) (2004) 6–12, https://doi.org/
10.3168/jds.S0022-0302(04)70056-9.

[6] J. A. Gray, P. S. Chandry, M. Kaur, C. Kocharunchitt, J. P. Bowman, and E. M.
Fox, “Novel biocontrol methods for Listeria monocytogenes biofilms in food
production facilities,” Front. Microbiol., vol. 9, no. APR, pp. 1–12, 2018, doi:
10.3389/fmicb.2018.00605.

[7] R.H. Orsi, M. Wiedmann, Characteristics and distribution of Listeria spp.,
including Listeria species newly described since 2009, Applied Microbiology and
Biotechnology 100 (12) (2016) 5273–5287, https://doi.org/10.1007/s00253-016-
7552-2.

[8] P. Wang, et al., Characterization of Listeria Monocytogenes Isolates in Import
Food Products of China from 8 Provinces Between 2005 and 2007, J. Food Sci. 77
(4) (2012) pp, https://doi.org/10.1111/j.1750-3841.2011.02596.x.

[9] R.H. Orsi, H.C. de. Bakker, M. Wiedmann, Listeria monocytogenes lineages:
Genomics, evolution, ecology, and phenotypic characteristics, Int. J. Med.
Microbiol. 301 (2) (2011) 79–96, https://doi.org/10.1016/j.ijmm.2010.05.002.

[10] G.T. Jeffers, J.L. Bruce, P.L. McDonough, J. Scarlett, K.J. Boor, M. Wiedmann,
Comparative genetic characterization of Listeria monocytogenes isolates from
human and animal listeriosis cases, Microbiology 147 (5) (2001) 1095–1104,
https://doi.org/10.1099/00221287-147-5-1095.

[11] S. V. Poimenidou, M. Dalmasso, K. Papadimitriou, E. M. Fox, P. N. Skandamis,
and K. Jordan, “Virulence gene sequencing highlights similarities and differences in
sequences in Listeria monocytogenes serotype 1/2a and 4b strains of clinical and
food origin from 3 different geographic locations,” Front. Microbiol., vol. 9, no.
JUN, 2018, doi: 10.3389/fmicb.2018.01103.

[12] V. Braga, et al., Prevalence and serotype distribution of Listeria monocytogenes
isolated from foods in Montevideo-Uruguay, Brazilian J. Microbiol. 48 (4) (2017)
689–694, https://doi.org/10.1016/j.bjm.2017.01.010.

[13] H. Momtaz, S. Yadollahi, Molecular characterization of Listeria monocytogenes
isolated from fresh seafood samples in Iran, Diagn. Pathol. 8 (1) (2013) 1–6,
https://doi.org/10.1186/1746-1596-8-149.

[14] V. Ramaswamy et al., “Listeria — review of epidemiology and pathogenesis,” pp.
4–13, 2007.

[15] J.W.F. Law, N.S.A. Mutalib, K.G. Chan, L.H. Lee, Rapid metho ds for the
detection of foodborne bacterial pathogens: Principles, applications, advantages
and limitations, Front. Microbiol. 5, DEC (2014) 1–19, https://doi.org/10.3389/
fmicb.2014.00770.

[16] X. Zhao, C.W. Lin, J. Wang, D.H. Oh, Advances in rapid detection methods for
foodborne pathogens, J. Microbiol. Biotechnol. 24 (3) (2014) 297–312, https://
doi.org/10.4014/jmb.1310.10013.

[17] M.K. Grewal, P. Jaiswal, S.N. Jha, Detection of poultry meat specific bacteria
using FTIR spectroscopy and chemometrics, J. Food Sci. Technol. 52 (6) (2015)
3859–3869, https://doi.org/10.1007/s13197-014-1457-9.

[18] A. Aït-Kaddour, T. Boubellouta, I. Chevallier, Development of a portable
spectrofluorimeter for measuring the microbial spoilage of minced beef, Meat Sci.
88 (4) (2011) 675–681, https://doi.org/10.1016/j.meatsci.2011.02.027.

[19] Y.Z. Feng, G. Downey, D.W. Sun, D. Walsh, J.L. Xu, Towards improvement in
classification of Escherichia coli, Listeria innocua and their strains in isolated
systems based on chemometric analysis of visible and near-infrared spectroscopic
data, J. Food Eng. 149 (2015) 87–96, https://doi.org/10.1016/
j.jfoodeng.2014.09.016.

[20] T.L. Kammies, M. Manley, P.A. Gouws, P.J. Williams, Differentiation of
foodborne bacteria using NIR hyperspectral imaging and multivariate data
analysis, Appl. Microbiol. Biotechnol. 100 (21) (2016) 9305–9320, https://
doi.org/10.1007/s00253-016-7801-4.

[21] K.X. Mu, Y.Z. Feng, W. Chen, W. Yu, Near infrared spectroscopy for classification
of bacterial pathogen strains based on spectral transforms and machine learning,
Chemom. Intell. Lab. Syst. 179 (2018) 46–53, https://doi.org/10.1016/
j.chemolab.2018.06.003.

[22] D. Li, F. Zhang, J. Yu, X. Chen, B. Liu, and X. Meng, “A rapid and non-destructive
detection of Escherichia coli on the surface of fresh-cut potato slices and
application using hyperspectral imaging,” Postharvest Biol. Technol., vol. 171, no.
September 2020, p. 111352, 2021, doi: 10.1016/j.postharvbio.2020.111352.

[23] A. Soni, Y. Dixit, M.M. Reis, G. Brightwell, Hyperspectral imaging and machine
learning in food microbiology: Developments and challenges in detection of
bacterial, fungal, and viral contaminants, Compr. Rev. Food Sci. Food Saf. 21 (4)
(2022) 3717–3745, https://doi.org/10.1111/1541-4337.12983.

[24] Y.Z. Feng, W. Yu, W. Chen, K.K. Peng, G.F. Jia, Invasive weed optimization for
optimizing one-agar-for-all classification of bacterial colonies based on
hyperspectral imaging, Sensors Actuators, B Chem. 269 (2018) 264–270, https://
doi.org/10.1016/j.snb.2018.05.008.

[25] G. Foca, et al., The potential of spectral and hyperspectral-imaging techniques for
bacterial detection in food: A case study on lactic acid bacteria, Talanta 153 (2016)
111–119, https://doi.org/10.1016/j.talanta.2016.02.059.

[26] S.C. Yoon, et al., Hyperspectral imaging for differentiating colonies of non-O157
Shiga-toxin producing Escherichia coli (STEC) serogroups on spread plates of pure
cultures, J. near Infrared Spectrosc. 21 (2) (2013) 81–95, https://doi.org/10.1255/
jnirs.1043.

[27] P. Gu et al., “Unified classification of bacterial colonies on different agar media
based on hyperspectral imaging and machine learning,” Molecules, vol. 25, no. 8,
Apr. 2020, doi: 10.3390/molecules25081797.

[28] C. H. Feng, Y. Makino, S. Oshita, and J. F. García Martín, “Hyperspectral imaging
and multispectral imaging as the novel techniques for detecting defects in raw and

processed meat products: Current state-of-the-art research advances,” Food Control,
vol. 84, no. September 2017, pp. 165–176, 2018, doi: 10.1016/
j.foodcont.2017.07.013.

[29] K. Edwards, L.C. Hoffman, M. Manley, P.J. Williams, Raw Beef Patty Analysis
Using Near-Infrared Hyperspectral Imaging: Identification of Four Patty Categories,
Sensors 23 (2) (2023) pp, https://doi.org/10.3390/s23020697.

[30] K. Sendin, M. Manley, F. Marini, P.J. Williams, Hierarchical classification
pathway for white maize, defect and foreign material classification using spectral
imaging, Microchem. J. 162 (Mar. 2021) 105824, https://doi.org/10.1016/
J.MICROC.2020.105824.

[31] K. Esbensen, P. Geladi, Strategy of multivariate image analysis (MIA), Chemom.
Intell. Lab. Syst. 7 (1–2) (1989) 67–86, https://doi.org/10.1016/0169-7439(89)
80112-1.

[32] E. Bonah, X. Huang, R. Yi, J. H. Aheto, and S. Yu, “Vis-NIR hyperspectral imaging
for the classification of bacterial foodborne pathogens based on pixel-wise analysis
and a novel CARS-PSO-SVM model,” Infrared Phys. Technol., vol. 105, no. December
2019, p. 103220, 2020, doi: 10.1016/j.infrared.2020.103220.

[33] H. Jiang, W. Yuan, Y. Ru, Q. Chen, J. Wang, and H. Zhou, “Feasibility of
identifying the authenticity of fresh and cooked mutton kebabs using visible and
near-infrared hyperspectral imaging,” Spectrochim. Acta - Part A Mol. Biomol.
Spectrosc., vol. 282, no. July, 2022, doi: 10.1016/j.saa.2022.121689.

[34] M.R. Maleki, A.M. Mouazen, H. Ramon, J. De Baerdemaeker, Multiplicative
Scatter Correction during On-line Measurement with Near Infrared Spectroscopy,
Biosyst. Eng. 96 (3) (2007) 427–433, https://doi.org/10.1016/
j.biosystemseng.2006.11.014.

[35] A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation,” Anal. Chem, vol.
36, no. 8, pp. 1627–1639, 1964, [Online]. Available: Doi: 10.1021/ac60214a047.

[36] D. Ruiz-Perez, H. Guan, P. Madhivanan, K. Mathee, G. Narasimhan, So you think
you can PLS-DA? BMC Bioinformatics 21 (Suppl 1) (2020) 1–10, https://doi.org/
10.1186/s12859-019-3310-7.

[37] R.G. Brereton, G.R. Lloyd, Partial least squares discriminant analysis: Taking the
magic away, J. Chemom. 28 (4) (2014) 213–225, https://doi.org/10.1002/
cem.2609.

[38] J.M. Amigo, H. Babamoradi, S. Elcoroaristizabal, Hyperspectral image analysis.
A tutorial, Anal. Chim. Acta 896 (2015) 34–51, https://doi.org/10.1016/
j.aca.2015.09.030.

[39] M. Kuhn and K. Johnson, Applied Predictive Modeling with Applications in R, vol.
26. 2013. [Online]. Available: http://appliedpredictivemodeling.com/s/Applied_
Predictive_Modeling_in_R.pdf.

[40] J.A. Westerhuis, et al., Assessment of PLSDA cross validation, Metabolomics 4 (1)
(2008) 81–89, https://doi.org/10.1007/s11306-007-0099-6.

[41] M. Sokolova, N. Japkowicz, S. Szpakowicz, “Beyond accuracy, F-score and ROC:
A family of discriminant measures for performance evaluation”, AAAI Work. -,
Tech. Rep. WS-06-06 (2006) 24–29, https://doi.org/10.1007/11941439_114.

[42] D. Yang, D. He, A. Lu, D. Ren, J. Wang, Detection of the Freshness State of
Cooked Beef During Storage Using Hyperspectral Imaging, Appl. Spectrosc. 71 (10)
(2017) 2286–2301, https://doi.org/10.1177/0003702817718807.

[43] M. Cocchi, A. Biancolillo, F. Marini, Chemometric Methods for Classification and
Feature Selection vol. 82 (2018), https://doi.org/10.1016/bs.coac.2018.08.006.

[44] I.G. Chong, C.H. Jun, Performance of some variable selection methods when
multicollinearity is present, Chemom. Intell. Lab. Syst. 78 (1) (2005) 103–112,
https://doi.org/10.1016/j.chemolab.2004.12.011.

[45] F.B. De Santana, L.C. Gontijo, H. Mitsutake, S.J. Mazivila, L.M. De Souza, W.
Borges Neto, Non-destructive fraud detection in rosehip oil by MIR spectroscopy
and chemometrics, Food Chem. 209 (2016) 228–233, https://doi.org/10.1016/
j.foodchem.2016.04.051.

[46] M. R. Baqueta, A. Coqueiro, P. H. Março, and P. Valderrama, “Multivariate
classification for the direct determination of cup profile in coffee blends via
handheld near-infrared spectroscopy,” Talanta, vol. 222, no. August 2020, p.
121526, 2021, doi: 10.1016/j.talanta.2020.121526.

[47] M. Manley, Near-infrared spectroscopy and hyperspectral imaging: Non-
destructive analysis of biological materials, Chem. Soc. Rev. 43 (24) (2014)
8200–8214, https://doi.org/10.1039/c4cs00062e.

[48] J.M. Amigo, C. Santos, Preprocessing of hyperspectral and multispectral images,
Data Handl. Sci. Technol. 32 (2020) 37–53, https://doi.org/10.1016/B978-0-444-
63977-6.00003-1.

[49] J.J. Workman, Interpretive spectroscopy for near infrared, Applied Spectroscopy
Reviews 31 (3) (1996) 251–320, https://doi.org/10.1080/05704929608000571.

[50] B.G. Osborne, Near-infrared Spectroscopy in Food, Analysis. (2006), https://
doi.org/10.1002/9780470027318.a1018.

[51] J.J. Workman, L. Weyer, Practical Guide to Interpretive Near-Infrared,
Spectroscopy. (2007), https://doi.org/10.1201/9781420018318.

[52] P. Williams, J. Antoniszyn, M. Manley, Near Infrared Technology : Getting the
best out of the light, 1st ed., African Sun Media, 2019.

[53] C. Zhang, et al., Genome diversification in phylogenetic lineages I and II of
Listeria monocytogenes: Identification of segments unique to lineage II
populations, J. Bacteriol. 185 (18) (2003) 5573–5584, https://doi.org/10.1128/
JB.185.18.5573-5584.2003.

[54] F. Muchaamba, A.K. Eshwar, M.J.A. Stevens, R. Stephan, T. Tasara, Different
Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability
in Virulence and Stress Tolerance Profiles, Front. Microbiol. 12 (January) (2022)
1–23, https://doi.org/10.3389/fmicb.2021.792162.

[55] E.T. Sumrall, et al., Phage resistance at the cost of virulence: Listeria
monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated
invasion, PLoS Pathog. 15 (10) (2019) 1–29, https://doi.org/10.1371/
journal.ppat.1008032.

12

https://doi.org/10.1056/nejmoa1907462
https://doi.org/10.1056/nejmoa1907462
https://doi.org/10.3168/jds.S0022-0302(04)70056-9
https://doi.org/10.3168/jds.S0022-0302(04)70056-9
https://doi.org/10.1007/s00253-016-7552-2
https://doi.org/10.1007/s00253-016-7552-2
https://doi.org/10.1111/j.1750-3841.2011.02596.x
https://doi.org/10.1016/j.ijmm.2010.05.002
https://doi.org/10.1099/00221287-147-5-1095
https://doi.org/10.1016/j.bjm.2017.01.010
https://doi.org/10.1186/1746-1596-8-149
https://doi.org/10.3389/fmicb.2014.00770
https://doi.org/10.3389/fmicb.2014.00770
https://doi.org/10.4014/jmb.1310.10013
https://doi.org/10.4014/jmb.1310.10013
https://doi.org/10.1007/s13197-014-1457-9
https://doi.org/10.1016/j.meatsci.2011.02.027
https://doi.org/10.1016/j.jfoodeng.2014.09.016
https://doi.org/10.1016/j.jfoodeng.2014.09.016
https://doi.org/10.1007/s00253-016-7801-4
https://doi.org/10.1007/s00253-016-7801-4
https://doi.org/10.1016/j.chemolab.2018.06.003
https://doi.org/10.1016/j.chemolab.2018.06.003
https://doi.org/10.1111/1541-4337.12983
https://doi.org/10.1016/j.snb.2018.05.008
https://doi.org/10.1016/j.snb.2018.05.008
https://doi.org/10.1016/j.talanta.2016.02.059
https://doi.org/10.1255/jnirs.1043
https://doi.org/10.1255/jnirs.1043
https://doi.org/10.3390/s23020697
https://doi.org/10.1016/J.MICROC.2020.105824
https://doi.org/10.1016/J.MICROC.2020.105824
https://doi.org/10.1016/0169-7439(89)80112-1
https://doi.org/10.1016/0169-7439(89)80112-1
https://doi.org/10.1016/j.biosystemseng.2006.11.014
https://doi.org/10.1016/j.biosystemseng.2006.11.014
https://doi.org/10.1186/s12859-019-3310-7
https://doi.org/10.1186/s12859-019-3310-7
https://doi.org/10.1002/cem.2609
https://doi.org/10.1002/cem.2609
https://doi.org/10.1016/j.aca.2015.09.030
https://doi.org/10.1016/j.aca.2015.09.030
http://appliedpredictivemodeling.com/s/Applied_Predictive_Modeling_in_R.pdf
http://appliedpredictivemodeling.com/s/Applied_Predictive_Modeling_in_R.pdf
https://doi.org/10.1007/s11306-007-0099-6
https://doi.org/10.1007/11941439_114
https://doi.org/10.1177/0003702817718807
https://doi.org/10.1016/bs.coac.2018.08.006
https://doi.org/10.1016/j.chemolab.2004.12.011
https://doi.org/10.1016/j.foodchem.2016.04.051
https://doi.org/10.1016/j.foodchem.2016.04.051
https://doi.org/10.1039/c4cs00062e
https://doi.org/10.1016/B978-0-444-63977-6.00003-1
https://doi.org/10.1016/B978-0-444-63977-6.00003-1
https://doi.org/10.1080/05704929608000571
https://doi.org/10.1002/9780470027318.a1018
https://doi.org/10.1002/9780470027318.a1018
https://doi.org/10.1201/9781420018318
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0260
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0260
https://doi.org/10.1128/JB.185.18.5573-5584.2003
https://doi.org/10.1128/JB.185.18.5573-5584.2003
https://doi.org/10.3389/fmicb.2021.792162
https://doi.org/10.1371/journal.ppat.1008032
https://doi.org/10.1371/journal.ppat.1008032


CO
RR

EC
TE

D
PR

OO
F

R.T. Matenda et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy xxx (xxxx) 124579

[56] K.I. Kamisango, et al., Structures and biological activities of peptidoglycans of
Listeria monocytogenes and Propionibacterium acnes, J. Biochem. 92 (1) (1982)
23–33, https://doi.org/10.1093/oxfordjournals.jbchem.a133918.

[57] T. Brauge, et al., Teichoic acid is the major polysaccharide present in the Listeria
monocytogenes biofilm matrix, FEMS Microbiol. Lett. 363 (2) (2015) 1–7, https://
doi.org/10.1093/femsle/fnv229.

[58] K. ichi Uchikawa, I. Sekiawa, I. Azuma, Structural studies on teichoic acids in cell
walls of several serotypes of Listeria monocytogenes, J. Biochem. 99 (2) (1986)
315–327, https://doi.org/10.1093/oxfordjournals.jbchem.a135486.

[59] R. Capita, A. Felices-Mercado, C. Garci-Fernandez, and Alonso-Calleja,
“Characterization of Listeria monocytogenes originating from the Spanish meat-
processing chain,” Foods, vol. 34, no. 8, 2019, [Online]. Available:
www.mdpi.com/journal/foods.

[60] B.G. Osborne, T. Fearn, H. Hindle, Practical NIR spectroscopy with applications
in food and beverage analysis, Longman Scientific & Technical 50 (1993).

[61] D.F. Barbin, G. Elmasry, D.W. Sun, P. Allen, N. Morsy, Non-destructive
assessment of microbial contamination in porcine meat using NIR hyperspectral
imaging, Innov. Food Sci. Emerg. Technol. 17 (2013) 180–191, https://doi.org/
10.1016/j.ifset.2012.11.001.

[62] S. Brown, J.P. Santa Maria, S. Walker, Wall teichoic acids of gram-positive
bacteria, Annu. Rev. Microbiol. 67 (2013) 313–336, https://doi.org/10.1146/
annurev-micro-092412-155620.

[63] R.D. Abdi, J.R. Dunlap, B.E. Gillespie, D.B. Ensermu, R.A. Almeida, O. Kerro
Dego, Comparison of Staphylococcus aureus surface protein extraction methods
and immunogenicity, Heliyon 5 (10) (2019) e02528.

[64] T.J. Foster, J.A. Geoghegan, V.K. Ganesh, M. Höök, Adhesion, invasion and
evasion: The many functions of the surface proteins of Staphylococcus aureus, Nat.

Rev. Microbiol. 12 (1) (2014) 49–62, https://doi.org/10.1038/nrmicro3161.
[65] J.L. Xu, et al., Exploring the identification of multiple bacteria on stainless steel

using multi-scale spectral imaging from microscopic to macroscopic, Sci. Rep. 12
(1) (2022) 1–21, https://doi.org/10.1038/s41598-022-19617-3.

[66] C. L. M. Morais et al., Standardization of complex biologically derived
spectrochemical datasets, vol. 14, no. 5. Springer US, 2019. doi: 10.1038/s41596-
019-0150-x.

[67] M. Buxton, F. J. A. Van Ruitenbeek, M. Dalm, and M. W. N. Buxton, “Application
of near-infrared (NIR) spectroscopy to sensor based sorting of an epithermal Au-Ag
ore (revised version) Application of near-infrared (NIR) spectroscopy to sensor
based sorting of an epithermal Au-Ag ore,” no. March, 2015, doi: 10.13140/
RG.2.1.1038.4489.

[68] E. Bonah, X. Huang, J.H. Aheto, R. Osae, Application of Hyperspectral Imaging as
a Nondestructive Technique for Foodborne Pathogen Detection and
Characterization, Foodborne Pathog. Dis. 16 (10) (2019) 712–722, https://doi.org/
10.1089/fpd.2018.2617.

[69] E.L. Crowley, C.K. O’Sullivan, G.G. Guilbault, Increasing the sensitivity of
Listeria monocytogenes assays: Evaluation using ELISA and amperometic
detection, Analyst 124 (3) (1999) 295–299, https://doi.org/10.1039/a806875e.

[70] M. Farrés, S. Platikanov, S. Tsakovski, R. Tauler, Comparison of the variable
importance in projection (VIP) and of the selectivity ratio (SR) methods for variable
selection and interpretation, J. Chemom. 29 (10) (2015) 528–536, https://doi.org/
10.1002/cem.2736.

[71] E. Achata, C. Esquerre, C. O’Donnell, A. Gowen, A study on the application of
near infrared hyperspectral chemical imaging for monitoring moisture content and
water activity in low moisture systems, Molecules 20 (2) (2015) 2611–2621,
https://doi.org/10.3390/molecules20022611.

13

https://doi.org/10.1093/oxfordjournals.jbchem.a133918
https://doi.org/10.1093/femsle/fnv229
https://doi.org/10.1093/femsle/fnv229
https://doi.org/10.1093/oxfordjournals.jbchem.a135486
http://www.mdpi.com/journal/foods
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0300
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0300
https://doi.org/10.1016/j.ifset.2012.11.001
https://doi.org/10.1016/j.ifset.2012.11.001
https://doi.org/10.1146/annurev-micro-092412-155620
https://doi.org/10.1146/annurev-micro-092412-155620
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0315
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0315
http://refhub.elsevier.com/S1386-1425(24)00745-5/h0315
https://doi.org/10.1038/nrmicro3161
https://doi.org/10.1038/s41598-022-19617-3
https://doi.org/10.1089/fpd.2018.2617
https://doi.org/10.1089/fpd.2018.2617
https://doi.org/10.1039/a806875e
https://doi.org/10.1002/cem.2736
https://doi.org/10.1002/cem.2736
https://doi.org/10.3390/molecules20022611

	Differentiation of Listeria monocytogenes serotypes using near infrared hyperspectral imaging
	1. Introduction
	2. Materials and methods
	2.1. Bacterial culture and sample preparation
	2.2. NIR-HSI imaging system and image acquisition
	2.3. Hyperspectral image analysis
	2.4. Data analysis
	2.4.1. Region of interest identification and data extraction
	2.4.2. Exploratory and pre-process analysis

	2.5. Discriminant analysis
	2.6. Variable selection

	3. Results and discussion
	3.1. NIR spectra
	3.2. PCA results
	3.3. Classification results
	3.3.1. Full wavelength PLS-DA model

	3.4. VIP scores
	3.5. Prediction maps for L. Monocytogenes serotypes

	4. Conclusion
	Ethical approval
	CRediT authorship contribution statement
	Acknowledgments
	References


	fld82: 
	fld83: 
	fld108: 
	fld115: 
	fld122: 
	fld129: 
	fld160: 
	fld190: 
	fld219: 


