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• Three spectroscopic methods were
compared to verify hazelnut cultivars
and origin.

• MIR and NIR spectroscopic methods
achieved ≥93 % accuracy in classifying
hazelnuts.

• Benchtop NIR spectroscopy showed su-
perior performance for hazelnut
authentication.

• Ground hazelnuts provide better results
than whole kernels due to greater
homogeneity.

• Models rely on protein and lipid
composition for hazelnut
discrimination.
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A B S T R A C T

Hazelnut market prices fluctuate significantly based on cultivar and provenance, making them susceptible to coun-
terfeiting. To develop an accurate authentication method, we compared the performances of three spectroscopic
methods: near infrared (NIR), handheld near infrared (hNIR), and medium infrared (MIR), on over 300 samples from
various origins, cultivars, and harvest years. Spectroscopic fingerprints were used to develop and externally validate
PLS-DA classification models. Both cultivar and origin models showed high accuracy in external validation. The hNIR
model effectively distinguished cultivars but struggled with geographic distinctions due to lower sensitivity. NIR and
MIRmodels showedover93%accuracy,withNIRslightlyoutperformingMIR for geographicorigin.NIRproved tobea
fast and suitable tool forhazelnutauthentication.This study is thefirst to systematically compare spectroscopic tools for
authenticating hazelnut cultivar and origin using the same dataset, offering valuable insights for future food authen-
tication applications.
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1. Introduction

Hazelnuts are one of the most consumed nuts in Europe, as raw and
roasted fruits or included in many preparations and traditional dishes. In
addition, they are widely used in the chocolate and confectionary in-
dustries. The main hazelnut-producing countries are Turkey, Italy, the
USA, Azerbaijan, Chile and Georgia [1]. Hazelnut nutritional values and
sensory attributes are greatly influenced by geographical and varietal
origin [2–4]. Consequently, their market price also fluctuates signifi-
cantly depending on cultivar and provenance. Italian and Spanish
hazelnuts are among the highest priced, with values of 3,416 USD/T and
2,434 USD/T, respectively, in contrast to Georgian kernels, which are
priced at 1,287 USD/T [5]. Besides, hazelnuts with special geographical
indications, such as Protected Designation of Origin or Protected
Geographical Indication, are also highly appreciated by consumers,
which is reflected in their price.

The high economic value of hazelnuts makes them susceptible to
fraudulent practices. This susceptibility is accentuated by the absence of
effective fraud detection methods. Appropriate tools to verify the
cultivar and origin of hazelnuts are therefore necessary to ensure their
authenticity and to safeguard consumers’ rights.

Different analytical approaches have addressed this issue; morpho-
logical analysis [6,7], genetic methods [8,9], metabolomic analysis of
proteins, phenolic and lipidic compounds by chromatographic tech-
niques [6,10–12] and proton nuclear magnetic resonance (1H NMR)
[13] have been applied for hazelnut authentication. Nevertheless, these
methods are usually laborious, time consuming, not suitable to be
applied on-site (i.e. in the field, in the industry or in storage/retail fa-
cilities), require highly trained personnel and have a substantial cost.

Spectroscopic methods, such as mid-infrared (MIR) and near-
infrared (NIR) spectroscopy, are fast, simple, environmentally friendly
and non-destructive techniques, which can be applied directly to the
solid sample without complex sample pretreatment steps. They allow
simultaneous analysis of different chemical compounds and can be
easily adapted to on-site or on-line applications, making them suitable
for routine analysis.

These techniques, coupled with chemometric data analysis tools,
have been successfully applied to the varietal and geographical
authentication of different nuts [14–18]. In particular, previous works
used NIR spectroscopy to authenticate an Italian PDO “Nocciola
Romana” [19,20] to distinguish between Turkish hazelnut cultivars
[21], or to discriminate hazelnuts from different origins [22,23]. How-
ever, none of them has been applied to simultaneously authenticate the
origin and cultivar of hazelnuts. To the authors’ knowledge, only
Manfredi et al. [24] applied MIR spectroscopy to hazelnut halves, suc-
cessfully differentiating between three cultivars. No further studies
using MIR spectroscopy to authenticate hazelnuts have been found,
underscoring the need for further evaluation of the technique’s poten-
tial. Overall, studies using large sample sets, including higher variability
in terms of harvest years, origins, cultivars and producers, are still
needed to further corroborate the suitability of NIR and MIR spectros-
copies as tools for geographical and varietal authentication of hazelnuts.

On the other hand, the performance of different spectroscopic
methods for hazelnut authentication has not been systematically
compared. Such a comparison would be particularly interesting in the
case of MIR and NIR, as each provides different but complementary
information. NIR spectroscopy includes bands issued from overtones
and combination vibrations. It allows direct analysis of highly absorbing
samples. NIR measurements often result in overlapping bands and
complex spectra, so the bands are less specific in the NIR range than in
MIR, which may hinder their interpretability. In contrast, MIR spectra
include information of fundamental vibrations of specific functional
groups, providing spectra with better resolved bands that can be used for
structural identification [25]. In addition, NIR provides deeper light
penetration into the sample matter, performing better with bulk or
intact heterogeneous samples, minimizing the need for sample

preparation and having a wider scope of applications. This makes it ideal
for in situ analysis, as it requires less specificity requirements and less
sample preparation [26,27]. On this basis, a large number of handheld
NIR (hNIR) devices have been developed to authenticate a wide range of
products [28–32]. These devices are small, compact, robust, more
practical and affordable; they do not require a high level of expertise and
can be applied for routine in-field analysis. However, handheld systems
can reduce the accuracy of measurement, which can affect spectral
quality compared to benchtop alternatives [33].

The aim of this research was to systematically apply, compare and
evaluate the effectiveness of NIR and MIR spectroscopies for hazelnut
authentication. The main goal was to develop an accurate method to
simultaneously discriminate hazelnuts according to their geographical
and varietal origin. For this purpose, in order to ensure a direct com-
parison between the different spectroscopic techniques and to properly
evaluate their performances as hazelnut authentication tools, we ana-
lysed the same set of hazelnuts (both whole kernels and ground samples)
from different origins, cultivars, and harvest years. This analysis was
carried out by a NIR spectrometer, a hNIR spectrometer, and a MIR
spectrometer (the latter only for ground samples). Subsequently, indi-
vidual PLS-DA classification models for cultivar and origin discrimina-
tion were built for each technique. The geographical origin was
discriminated between samples of the same cultivar (‘Tonda di Giffoni’,
TG) produced in different countries, and the cultivar was discriminated
between samples of the same origin (Spain). The cultivar models focused
on discriminating TG hazelnuts, one of the most widespread cultivars
worldwide, from other (non-TG) cultivars, while the geographical origin
models were designed to classify samples according to their country of
origin. The classification models were externally validated and evalu-
ated for both fit and predictive ability.

2. Material and methods

2.1. Samples

A set of 302 traceable hazelnut samples was obtained directly from
producers within the framework of the TRACENUTS project (PID2020-
117701RB-I00). Samples were collected over four consecutive harvest
years, from 2019 to 2022. From these samples, 200 were of the ‘Tonda di
Giffoni’ cultivar (TG) from Chile (CHL, n = 40), Spain (ESP, n = 91),
Georgia (GEO, n = 34) and Italy (ITA, n = 35), while 102 were from
different cultivars (non-TG) produced in Spain (Table S1, Supplemen-
tary material). Samples were stored vacuum-packed at 4 ◦C until
analysis.

2.2. Sample preparation

Raw hazelnut kernels with skin were directly analysed by NIR
spectroscopy (benchtop and handheld device). Then, 15 g of the sample
was ground with an IKA TUBE MILL control, (IKA, Staufen, Germany),
and was analysed by NIR (benchtop and handheld device) and MIR
spectroscopy.

2.3. NIR spectroscopy

2.3.1. Benchtop NIR spectrometer
The NIR measurements of the whole and ground hazelnut kernels

were performed on a benchtop DS3 FOSS spectrometer (FOSS Analytics,
Hilleroed, Denmark) acquiring spectra every 2 nm within the wave-
length range of 400–2500 nm, (spectral resolution of 0.5 nm). Whole
kernels were presented in a cell quarter cup, while ground samples were
placed in ring cups. A background reference spectrum was collected
before each measure. Two consecutive measures, being each the average
of seven spectra at 4 different points of the cup (28 spectra), were
collected for every sample. Both measures were averaged previously to
chemometric analysis. ISIscan Nova ™ (2021, FOSS) was used for NIR
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spectra recording.

2.3.2. Handheld NIR spectrometer (hNIR)
NIR spectra of the whole and ground samples, presented in the same

way as before, were also acquired using a handheld device, NeoSpectra
Scanner (Si-Ware Systems Inc., California, U.S.). Data was collected with
the NeoSpectra Scan software v7.1. Spectra was acquired every 2 nm
within the wavelength range of 1350–2500 nm, (spectral resolution of
16 nm) and a scanning time of 3 s. Two consecutive replicates were
collected per sample and calibration was run every 10 measures (5
samples). Prior to data analysis the corresponding replicated spectra
were averaged.

2.4. MIR spectroscopy

MIR measurements of hazelnut ground samples were performed on a
Vertex 70 spectrometer (Bruker Optics, Ettlingen, Germany) equipped
with Attenuated Total Reflectance (ATR) and an integrated press.
Samples were directly deposited on the crystal and pressed against it to
ensure optimum contact with the diamond. Each measure was the
average spectrum of 64 scans. Spectra was acquired every 1.93 cm− 1

within the wavelength range of 600–4000 cm− 1, (spectral resolution of
4 cm− 1). Background readings were collected prior to each sample
spectrum collection. Three consecutive replicates were collected per
sample and averaged prior to chemometric analysis. OPUS software
(version 8.2.28) was used for MIR spectra recording.

2.5. Chemometrics

Spectral data matrices were extracted as csv files and processed using
SIMCA v13.0© (Sartorius Lab Instruments GmbH & Co. KG, Gottingen,
Germany).

2.5.1. Partial least squares discriminant analysis (PLS-DA)
For each method and sample preparation (NIR, whole or ground;

hNIR, whole or ground; and MIR, ground), individual PLS-DA classifi-
cation models were built to authenticate cultivar or geographical origin.
Cultivar models were binary models to discriminate between two classes
of Spanish samples (n = 193): TG cultivar (n = 91) and non-TG cultivar
(n = 102). Origin models were multi-class models aimed at classifying
TG samples (n= 200) according to their country of origin: CHL (n= 40),
ESP (n = 91), GEO (n = 34) or ITA (n = 35).

Prior to model building, for each type of authentication model
(origin or cultivar), each sample set was randomly split into training (80
% of the samples of each category: cultivar model, n = 154; origin
model, n = 160) and validation set (20 % of the samples of each cate-
gory: cultivar model, n= 39; origin model n= 40). The splitting was run
seven times (7 iterations) for each authentication model to increase the
robustness of the external validation, resulting in seven different
training sets and their corresponding validation sets. Although randomly
split, a stratified sampling strategy was followed by maintaining the
variability and proportions of the sample set in the validation and
training sets (Table S1, Supplementary material). The exact same split-
ting and resulting training and validation sets were used for all the
methods to ensure the direct comparability between them.

In cultivar models (by binary PLS-DA), classes were expressed as PLS
dummy variables, where ’non-TG’ was represented as 1 and ’TG’ as 0.
The PLS predicted value (PV) of each sample was used for its classifi-
cation into one of the two classes based on a classification threshold (PV
= 0.5). Origin models (by multi-class PLS-DA) operated as multiple bi-
nary models, each comparing one class against the others. A dummy Y
matrix held a set of classification vectors equal to the number of classes,
where each vector had a value of 1 for one class (CHL, ESP, GEO or ITA)
and 0 for all the other classes (non-CHL, non-ESP, non-GEO or non-ITA).
Each sample was classified into the class corresponding to the vector
leading to the highest PV, provided it was above the classification

threshold (here, PV = 0.5). Samples with PV below the classification
threshold (PV < 0.5) for all vectors were not assigned to any class.

Models were developed on the training sets and first internally
validated through leave 10 %-out cross-validation using the samples of
the training sets. The optimal number of latent variables (LV) and pre-
processing were selected according to the lowest Root Mean Squared
Error of Cross Validation (RMSEcv) criteria. Hotelling’s T2 and Q re-
siduals were used to detect outliers [34]. Permutation test (n = 20
permutations) and ANOVA on the cross-validated predictive residuals
(p-value) [35] were carried out to assess the risk of model overfitting.
Finally, models were externally validated by predicting the class of the
samples in the respective validation set, which had not been used to
build the models. The suitability of each PLS-DAmodel was evaluated by
the Q2 values and efficiency, which was expressed as the rate of correct
classification of each class. Additionally, for the binary cultivar models
the sensitivity, Eq. (1) and specificity, Eq. (2) were also assessed. True
positives were the non-TG samples correctly classified, and true posi-
tives + false negatives corresponded to the total non-TG samples. True
negatives were the TG samples correctly classified, and true negatives +
false positives corresponded to the total TG samples [36].

Sensitivity =
true positives

[true positives+ false negatives]
(1)

Specificity =
true negatives

[true negatives+ false positives]
(2)

The performance of models from each method and sample prepara-
tion was compared to determine the most suitable one for
authentication.

2.5.2. Evaluation of PLS-DA regression coefficients
For the methods that gave the most promising results, models were

rebuilt using all samples (cultivar n = 193, or origin n = 200), and their
regression coefficients were explored to identify the most relevant var-
iables for the classification (cultivar or origin) and tentatively link them
to chemical species. The jack-knife standard error of cross-validation
(SEcv) was used to evaluate the significance of the regression co-
efficients, with values exceeding their corresponding SEcv considered
significant. Out of the significant variables, only those with the highest
absolute values (25 % higher than the average of the coefficients) were
considered.

3. Results and discussion

3.1. PLS-DA classification models

3.1.1. Whole kernels
For the PLS-DA models developed on the whole kernels analysed by

the benchtop NIR and hNIR spectrometers data, the optimal pre-
processing, according to the lowest RMSEcv criterion, was a first de-
rivative, Savitzky–Golay smoothing (second order with a polynomial
filter of 15-point window) and mean centring and scaling to unit of
variance. For models developed with the benchtop NIR spectrometer,
data was also pre-processed with the SNV. No outliers were detected
according to the Hotelling’s T2 range and Q residuals.

The cross-validation results of the models built from training sets (7
iterations) were promising for TG cultivar discrimination for both NIR
and hNIR models, with correct classification rates of 96.0 % and 87.2 %,
respectively (Table S2, Supplementary material). However, the perfor-
mance of the model for discrimination according to origin appears to be
lower, in particular when using hNIR data, achieving only a 66.3 % of
correct classification (Table S3, Supplementary material).

These findings were corroborated through external validation by
predicting the class of the samples of the corresponding validation sets.
Tables 1 and 2 present the mean values obtained from seven iterations of
the external validation of each type of authentication model (Cultivar:
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TG/non-TG; Geographical origin: CHL/ESP/GEO/ITA) developed with
NIR and hNIR data from whole kernels. In all cases involving whole
kernel analysis, the NIR models outperformed the hNIR models with
higher sensitivity, specificity, and total correct classification rate (91.2
% vs 82.4 % in cultivar model; 81.1 % vs 53.2 % in origin model). The
NIR and hNIR cultivar models showed high sensitivity (0.90 and 0.83)
and specificity (0.93 and 0.82), proving their efficiency in discrimi-
nating TG samples from other cultivars (Table 2). Nonetheless, the
origin models showed lower rates of correct classification for both NIR
and hNIR, especially for GEO and ITA (Table 3). As observed, neither the
NIR nor the hNIR were able to accurately classify the ITA samples, which
were mostly not assigned to any class or were misclassified as ESP
samples. This could be attributed to the proximity of these two regions
and the similarity of their pedoclimatic conditions, which may result in
similar effects on hazelnut composition. The poor performance of the
hNIR origin models indicates that it is not suitable for accurate classi-
fication of whole hazelnuts according to their geographical origin.

3.1.2. Ground samples
For NIR models based on ground samples, a first derivative and

smoothing by Savitzky–Golay (second-order polynomial filter with a 15-
point window) was applied along with SNV and mean centring and
scaling to unit of variance. For hNIR models, the optimal pre-processing
was SNV followed by mean centring and scaling to unit of variance,
whereas for MIR models a first derivative and smoothing (Savitz-
ky–Golay second-order polynomial filter with a 5-point window) was
applied. No outliers were detected according to the Hotelling’s T2 range
and Q residuals. Both types of authentication models (origin and
cultivar) developed on ground samples by NIR and MIR presented suc-
cessful cross-validation results with a high overall rate of correct clas-
sification (98.7–99.8 % cultivar model; 95.4–98.0 % origin model),
while the accuracy was lower for hNIR models (89 % overall correct
classification for both models) (Tables S4 and S5 of Supplementary
information).

According to the external validation results, hNIR model of ground

samples could be useful to discriminate TG cultivar from other cultivars
(0.80 sensitivity, 0.89 specificity and 83.9 % correct classification)
(Table 3) but it was still unable to accurately distinguish Georgian and
Italian samples from those produced in other regions (Table 4). This
could be attributed to the lower sensitivity of the hNIR spectrometer
compared to a benchtop spectrometer.

On the other hand, the NIR and MIR models based on ground sample
data performed satisfactorily in external validation. For cultivar models,
both techniques achieved a sensitivity equal or higher than 0.92 and a
specificity of 0.98, resulting in an overall classification rate of 95 % for
both techniques (Table 3). Concerning the geographical origin models,
NIR outperformed MIR in classifying hazelnuts from GEO (91.8 % vs
85.7 %) and ITA (91.8 % vs 83.7 %), providing slightly better overall
classification results (96.4 % vs 93.9 %, respectively) (Table 4).
Consequently, NIR proved to provide the most successful spectroscopic
model for hazelnut varietal and geographical authentication.

In all cases, the results for the ground samples outperformed those
obtained with the whole kernels, in line with studies performed on other
nuts [37]. This could be attributed to the higher homogeneity and
representativeness of the ground samples compared to analysing only a

Table 1
External validation of PLS-DA cultivar models developed on whole kernels
analysed by benchtop NIR and handheld NIR (hNIR) spectrometers. Results are
mean values (±standard deviation) obtained from seven iterations.

Whole kernel – Cultivar model: TG/non-TG

NIR spectrometer (LVs = 9, Q2 = 0.47, RMSEcv = 0.38)a

n Non-
TG (n)

TG (n) Correct
classification
(%)

Sensitivity Specificity

Non-
TG

21 18.9
± 1.3

2.1 ±

1.3
89.8 ± 6.4 0.90 ±

0.06


TG 18 1.3 ±

1.1
16.7
± 1.1

92.9 ± 6.2  0.93 ±

0.06
Total 39   91.2 ± 4.4  

hNIR spectrometer (LVs = 6, Q2 = 0.35, RMSEcv = 0.41)a

 n Non-
TG (n)

TG (n) Correct
classification
(%)

Sensitivity Specificity

Non-
TG

21 17.4
± 1.7

3.6 ±

1.7
83.0 ± 8.2 0.83 ±

0.08


TG 18 3.3 ±

1.3
14.7
± 1.3

81.7 ± 7.0  0.82 ±

0.07
Total 39   82.4 ± 6.4  

For all models, ANOVA p-value < 0.05.
a Model parameters: mean values obtained with the training sets from 7 it-

erations. LVs: latent variables of the training model; Q2: Cumulative fraction of Y
variation predicted by the X training model up to the specified latent variable,
according to cross-validation; RMSEcv: root mean square error of the cross
validation of the training model. TG: ‘Tonda di Giffoni’; non-TG: other cultivars.

Table 2
External validation of PLS-DA origin models developed on whole kernels ana-
lysed by benchtop NIR (NIR) and handheld NIR (hNIR) spectrometers. Results
are mean values (±standard deviation) obtained from seven iterations.

Whole kernel – Geographical origin model: CHL/ESP/GEO/ITA

NIR spectrometer (LVs = 14, Q2 = 0.27, RMSEcv = 0.36)a

n CHL
(n)

ESP
(n)

GEO
(n)

ITA
(n)

Not
assigned
(n)

Correct
classification
(%)

CHL 8 6.6
± 1.1

0.6 ±

0.8
0.0
± 0.0

0.0
±

0.0

0.9 ± 1.2 82.1 ± 14.2

ESP 18 0.0
± 0.0

16.7
± 1.0

0.1
± 0.4

0.3
±

0.5

0.9 ± 0.9 92.9 ± 5.3

GEO 7 0.3
± 0.5

0.4 ±

0.8
5.0
± 1.5

0.3
±

0.5

1.0 ± 1.0 71.4 ± 21.8

ITA 7 0.0
± 0.0

1.6 ±

1.0
0.0
± 0.0

4.1
±

1.3

1.3 ± 1.7 59.2 ± 19.2

Total 40     4.0 ± 2.2 81.1 ± 7.2

hNIR spectrometer (LVs = 9, Q2 = 0.23, RMSEcv = 0.36)a

 n CHL
(n)

ESP
(n)

GEO
(n)

ITA
(n)

Not
assigned
(n)

Correct
classification
(%)

CHL 8 3.7
± 1.6

0.9 ±

0.7
0.0
± 0.0

0.4
±

0.5

3.0 ± 1.2 46.4 ± 20.0

ESP 18 0.9
± 0.9

12.9
± 2.0

0.6
± 0.5

0.0
±

0.0

3.7 ± 2.3 71.4 ± 10.8

GEO 7 0.0
± 0.0

1.9 ±

0.9
2.1
± 1.1

0.1
±

0.4

2.9 ± 1.6 30.6 ± 15.3

ITA 7 0.7
± 0.5

2.1 ±

1.5
0.0
± 0.0

2.6
±

0.8

1.6 ± 1.3 36.7 ± 11.2

Total 40     11.1 ±

3.2
53.2 ± 5.7

For all models, ANOVA p-value < 0.05.
a Model parameters: mean values obtained with the training sets from 7 it-

erations. LVs: latent variables of the training model; Q2: Cumulative fraction of Y
variation predicted by the X training model up to the specified latent variable,
according to cross-validation; RMSEcv: root mean square error of the cross
validation of the training model. CHL: Chile; ESP: Spain; GEO: Georgia; ITA:
Italy.
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single or a few kernels per sample. Additionally, grinding not only im-
proves sample homogeneity but also causes oil release from the cells,
which affects the primary spectral signals. In whole kernels with skin,
the dominant signals arise primarily from the lignocellulosic structure,
whereas in ground samples, the signal from the released oil becomes
more prominent. Consequently, the difference in model performance
can be partly attributed to this shift in dominant signals between the two
sample types.

3.2. Regression coefficients

The regression coefficients of the two best performing methods (NIR
and MIR spectroscopic analysis of ground hazelnuts) were explored to
identify the most informative variables in PLS-DA models for cultivar or
origin discrimination and to relate them to the chemical composition of
the samples.

3.2.1. NIR spectroscopy
The interpretation of NIR spectra might be hindered by the fact that

some of the bands in the analysed range are overtones containing
generic information corresponding to different molecular vibrations of
different functional groups. Even so, prior knowledge of the hazelnut’s
chemical composition enables the tentative identification of variables
relevant in classifying the samples within each category. These variables
can then be correlated with the main compositional constituents of the
samples (lipids, proteins, carbohydrates).

In Fig. 1, the regression coefficients of the NIR PLS-DA models for
cultivar (a) and origin (b) are displayed against the pre-processed and
the raw spectra. For the cultivar model, the highest regression co-
efficients of the TG class corresponded to bands around 1482–1490 nm,
1588–1606 nm, and 2180–2220 nm. All these bands were related to
protein functional groups. The first two could be assigned to the first

Table 3
External validation of PLS-DA cultivar models developed on ground samples
analysed by benchtop NIR (NIR), handheld NIR (hNIR) and MIR spectrometers.
Results are mean values (±standard deviation) obtained from seven iterations.

Ground samples – Cultivar model: TG/non-TG

NIR spectrometer (LVs = 10, Q2 = 0.53, RMSEcv = 0.34)a

n Non-
TG (n)

TG (n) Correct
classification
(%)

Sensitivity Specificity

Non-
TG

21 19.3
± 0.8

1.7 ±

0.8
91.8 ± 3.6 0.92 ±

0.04


TG 18 0.4 ±

0.5
17.7
± 0.5

98.4 ± 2.7  0.98 ±

0.03
Total 39   94.9 ± 2.1  

hNIR spectrometer (LVs = 9, Q2 = 0.39, RMSEcv = 0.39)a

 n Non-
TG (n)

TG (n) Correct
classification
(%)

Sensitivity Specificity

Non-
TG

21 16.1
± 1.0

4.3 ±

1.0
79.6 ± 4.5 0.80 ±

0.05


TG 18 2.0 ±

0.8
16.0
± 0.8

88.9 ± 4.5  0.89 ±

0.05
Total 39   83.9 ± 2.4  

MIR spectrometer (LVs = 10, Q2 = 0.63, RMSEcv = 0.30)a

 n Non-
TG (n)

TG (n) Correct
classification
(%)

Sensitivity Specificity

Non-
TG

21 19.6
± 1.4

1.4 ±

1.4
93.2 ± 6.7 0.93 ±

0.07


TG 18 0.4 ±

0.5
17.6
± 0.5

97.6 ± 3.0  0.98 ±

0.03
Total 39   95.2 ± 2.3  

For all models, ANOVA p-value < 0.05.
a Model parameters: mean values obtained with the training sets from 7 it-

erations. LVs: latent variables of the training model; Q2: Cumulative fraction of Y
variation predicted by the X training model up to the specified latent variable,
according to cross-validation; RMSEcv: root mean square error of the cross
validation of the training model. TG: ‘Tonda di Giffoni’; non-TG: other cultivars.

Table 4
External validation of PLS-DA origin models developed on ground samples
analysed by benchtop NIR (NIR), handheld NIR (hNIR) and MIR spectrometers.
Results are mean values (±standard deviation) obtained from seven iterations.

Ground samples – Geographical origin model: CHL/ESP/GEO/ITA

NIR spectrometer (LVs = 14, Q2 = 0.66, RMSEcv = 0.25)a

n CHL
(n)

ESP
(n)

GEO
(n)

ITA
(n)

Not
assigned
(n)

Correct
classification
(%)

CHL 8 8.0
± 0.0

0.0 ±

0.0
0.0
± 0.0

0.0
±

0.0

0.0 ± 0.0 100.0 ± 0.0

ESP 18 0.0
± 0.0

17.7
± 0.5

0.0
± 0.0

0.0
±

0.0

0.3 ± 0.5 98.4 ± 2.7

GEO 7 0.0
± 0.0

0.3 ±

0.5
6.4
± 0.4

0.0
±

0.0

0.4 ± 0.5 91.8 ± 7.6

ITA 7 0.1
± 0.4

0.0 ±

0.0
0.0
± 0.0

6.4
±

0.8

0.4 ± 0.5 91.8 ± 11.2

Total 40     1.1 ± 0.9 96.4 ± 2.4

hNIR spectrometer (LVs = 9, Q2 = 0.50, RMSEcv = 0.29)a

 n CHL
(n)

ESP
(n)

GEO
(n)

ITA
(n)

Not
assigned
(n)

Correct
classification
(%)

CHL 8 7.3
± 0.5

0.0 ±

0.0
0.0
± 0.0

0.0
±

0.0

0.7 ± 0.5 91.1 ± 6.1

ESP 18 0.1
± 0.4

17.1
± 0.9

0.0
± 0.0

0.0
±

0.0

0.7 ± 1.0 95.2 ± 5.0

GEO 7 0.1
± 0.4

0.7 ±

0.5
4.1
± 1.1

0.3
±

0.8

1.7 ± 1.3 59.2 ± 15.3

ITA 7 0.0
± 0.0

0.6 ±

0.5
0.3
± 0.5

4.6
±

0.5

1.6 ± 0.8 65.3 ± 7.6

Total 40     4.7 ± 1.8 82.9 ± 1.7

MIR spectrometer (LVs = 12, Q2 = 0.61, RMSEcv = 0.26)a

 n CHL
(n)

ESP
(n)

GEO
(n)

ITA
(n)

Not
assigned
(n)

Correct
classification
(%)

CHL 8 8.0
± 0.0

0.0 ±

0.0
0.0
± 0.0

0.0
±

0.0

0.0 ± 0.0 100.0 ± 0.0

ESP 18 0.0
± 0.0

17.7
± 0.5

0.0
± 0.0

0.0
±

0.0

0.3 ± 0.5 98.4 ± 2.7

GEO 7 0.0
± 0.0

0.6 ±

0.5
6.0
± 0.6

0.0
±

0.0

0.4 ± 0.8 85.7 ± 8.2

ITA 7 0.0
± 0.0

0.1 ±

0.4
0.0
± 0.0

5.9
±

0.7

1.0 ± 0.6 83.7 ± 9.9

Total 40     1.7 ± 1.1 93.9 ± 2.4

For all models, ANOVA p-value < 0.05.
a Model parameters: mean values obtained with the training sets from 7 it-

erations. LVs: latent variables of the training model; Q2: Cumulative fraction of Y
variation predicted by the X training model up to the specified latent variable,
according to cross-validation; RMSEcv: root mean square error of the cross
validation of the training model. Chile; ESP: Spain; GEO: Georgia; ITA: Italy.
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overtone of the N–H stretching of the peptide bond and amino acids
side chains, while the last ones belonged to the combination of amide I
and amide III bonds [21,38]. The most relevant coefficients for the non-
TG class were assigned to the bands around 1952–1990 nm and
2220–2232 nm, which were related to primary amide groups and to the
methylene group combination bands of fatty acids, respectively [20,38].
For the origin model, the most relevant coefficients for the ESP class
corresponded to the following bands: 722–774 nm, belonging to an
O–H stretching overtone, which can originate from alkyl, and primary
alcohols, phenols or water [38]; 1640–1658 nm, assigned to the first
C–H stretching overtone associated with a secondary alkyl group,
which could be related to unsaturated fatty acids [19]; 1816–1844 nm,
corresponding to a combination of second O–H/C–O stretching over-
tones of cellulose [38]; 2110–2150 nm related to combination bands of
C–H/C––O stretching associated to lipids [38]; 2266–2270 nm, corre-
sponding to a combination of O–H/C–O stretching of cellulose or to
the peptide bond CONH2 in β-sheet structures; and 2476–2482 nm,
assigned to the combination bands of the C–H stretching in methyl
group of lipid and aliphatic compounds [20,38]. For the non-ESP class,
the most significant bands were: 582–615 nm, assigned to the fourth OH
stretching overtone in alkyl alcohols [38]; 1516–1532 nm, related to the
first NH stretching overtone of the amide group [38]; 1724–1728 nm,
corresponding to first overtone of the C–H vibration of triolein [39,40];
2192–2208 nm, associated to the combination of amide I and amide III

bonds [21,38]; 2226–2238 nm and 2440–2444, both assigned to com-
bination bands of the C–H stretching in methyl group of lipidic com-
pounds [20].

Although some of the main discriminant bands coincided in both
cultivar and origin models, such as the band around 2180–2220 nm (a
combination band associated to amide bonds) and that around
2220–2240 nm (related to methyl groups in lipid compounds), in gen-
eral, the most relevant variables for each discriminant model were
different. The protein-related bands, together with those associated to
lipids, were the most relevant variables to distinguish the TG cultivar.
These findings are consistent with previous studies [20,21], which re-
ported that the most influential spectral bands in hazelnut cultivar
classification corresponded to protein and lipid compounds.

On the other hand, the most significant bands for discriminating the
geographical origin were related to a wider variety of compounds:
mainly lipids (1640–1658, 1724–1728, 2110–2150, 2226–2238 and
2440–2482 nm), proteins (1516–1532, 2192–2208 and 2266–2270 nm),
complex carbohydrates (1816–1844 and 2266–2270 nm) and a few
bands associated to compounds containing hydroxy groups (722–774
nm). These results agreed with previous research [22,23] reporting
similar findings in Italian and Georgian hazelnuts and in samples from
other origins (France, Germany and Turkey).

Fig. 1. Regression coefficients of the PLS-DA models developed on ground samples analysed by NIR benchtop spectrometer; a) cultivar model (‘Tonda di Giffoni’ TG
vs non-TG) b) origin model (‘Spain’ ESP vs non-ESP). Regression coefficients (above) are plotted against the pre-processed (middle) and raw spectra (below). For each
model, the most relevant coefficients for the prediction of the TG and ESP classes are highlighted in blue and those relevant for non-TG, non-ESP are highlighted
in red.
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3.2.2. MIR spectroscopy
Fig. 2 shows the regression coefficients of the MIR PLS-DA cultivar

(a) and origin (b) models against the corresponding pre-processed and
raw spectra. In the cultivar model, some of the most significant regres-
sion coefficients, for both TG and non-TG classes, corresponded to bands
in the low-frequency region (600–900 cm− 1). This region is associated to
N–H wagging of primary and secondary amines and amides [41]. The
highest regression coefficients of both classes corresponded to the band
around 900–1200 cm− 1, which belonged to the C–O stretching of the
ester groups in triacylglycerols [41,42]. For the non-TG class, several
relevant regression coefficients corresponded to a broad interval with
numerous bands around 1230–1470 cm− 1 that were assigned to C–H
bending of CH2 and CH3 of lipids, and to the bands in the region
1438–1480 cm− 1, which are characteristic of the unsaponifiable fraction
compounds [42–44]. Finally, the band around 1500–1570 cm− 1, asso-
ciated with amide II vibrations, arises from mixed N–H bending and
C–N stretching vibration in protein structures [24,45].

For the origin model, the most significant coefficients are in the
1000–1750 cm− 1 range. For the ESP class, the most discriminant bands
were: the broad interval with numerous bands associated to CH2
bending of lipids and unsaponifiable fraction compounds (1300–1470
cm− 1) [43]; the amide II vibration band around 1500–1570 cm− 1

related to protein structures; the amide I band associated C––O
stretching of protein amides (1600–1670 cm− 1) and the narrow band at
1710–1780 cm− 1 corresponding to C––O stretching of ester groups of
triglycerides [24,45]. Two of these bands, the broad CH2 band around

1300–1470 cm− 1 and the amide I band (1600–1670 cm− 1), were also
relevant for the discrimination of the non-ESP class. Additionally, the
band around 900–1200 cm− 1 assigned to the C-O stretching of the ester
groups in triacylglycerols was particularly significant for the non-ESP
class.

In general, for both types of models, the most discriminating vari-
ables were associated to protein, lipid and unsaponifiable fraction
compounds and were found in the 800–1800 cm− 1 region of the spectral
fingerprint. The absorption pattern in this region is complex but contains
valuable information, as it is highly specific for each molecular species.
In the cultivar models, the low frequency region of the spectra also
appeared to be relevant for discrimination. In contrast, in the origin
model, the final section of the fingerprint region, between 1300 and
1700 cm− 1, was the most significant for discrimination.

Unlike the NIR method, which seemed to find proteins as the most
discriminant compounds between TG and non-TG classes, the MIR
method relied mainly on lipids, including both triacylglycerols and
unsaponifiable fraction compounds, to achieve this discrimination.
Regarding the geographical discrimination, the NIR model identified
bands related to unsaturated fatty acids, other lipid compounds and
complex carbohydrates such as cellulose as very distinctive for the ESP
category, whereas in the MIR models, triacylglycerols and unsaponifi-
able fraction compounds were more relevant in distinguishing between
origins.

Fig. 2. Regression coefficients of the PLS-DA models developed on ground samples analysed by MIR spectrometer; (a) cultivar model (‘Tonda di Giffoni’ TG vs non-
TG) (b) origin model (‘Spain’ ESP vs non-ESP). Regression coefficients (above) are plotted against the pre-processed (middle) and raw spectra (below). For each
model, the most relevant coefficients for the prediction of the TG and ESP classes are highlighted in blue and those relevant for non-TG, non-ESP are highlighted
in red.
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4. Conclusions

Three different spectroscopic methods were tested to authenticate
hazelnut cultivar and geographical origin: NIR spectroscopy using a
benchtop instrument, NIR spectroscopy using a handheld device, and
MIR spectroscopy. The analysis of ground hazelnuts yielded signifi-
cantly better results than whole kernels, owing to the greater homoge-
neity, improved sample representativeness, and the prominence of oil
content signals. Among the analysis conducted on the ground samples,
the benchtop NIR spectrometer demonstrated superior performance,
with a sensitivity of 0.92 and a specificity of 0.98 for cultivar models, as
well as high correct classification rates for all origins (≥91 %). This
resulted in overall correct classification rates of 95 % and 96 %, for
cultivar and origin models respectively, closely followed by the MIR
method.

Exploring the regression coefficients of the most promising models,
based onMIR and NIR applied to ground samples, revealed their reliance
on distinct sets of information for discrimination. It was observed that
the discrimination of hazelnut cultivar and origin was mainly driven by
proteins and lipid composition.

In conclusion, this study allowed for a straightforward comparison of
three spectroscopic techniques that offer valuable insights into their
performance when applied to exactly the same dataset of hazelnuts from
different origins and cultivars. The present work showed that the NIR
method could be a fit-for-purpose tool for hazelnut geographical and
varietal authentication. However, optimal models need to be further
developed and evaluated through extensive datasets, including higher
natural heterogeneity of samples, producing regions, main cultivars and
multiple harvest years.

5. Research data

Torres-Cobos, B., Tres, A., Vichi, S., Guardiola, F., Rovira, M.,
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(NIR) and Mid Infrared (MIR) spectra of whole and ground hazelnuts
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[36] B. Magnusson, U. Örnemark, Eurachem guide: The Fitness for Purpose of Analytical
Methods - A Laboratory Guide to Method Validation and Related Topics, second
edition, Eurachem, Belgium, 2014.

[37] M. Arndt, M. Rurik, A. Drees, K. Bigdowski, O. Kohlbacher, M. Fischer, Comparison
of different sample preparation techniques for NIR screening and their influence on
the geographical origin determination of almonds (Prunus dulcis MILL.), Food
Control 115 (2020) 107302, https://doi.org/10.1016/j.foodcont.2020.107302.

[38] J. Workman, L. Weyer, Practical Guide to Interpretive Near-infrared Spectroscopy,
first edition, CRC Press, Boca Raton, Florida, 2007, doi: 10.1201/9781420018318.

[39] T. Sato, S. Kawano, M. Iwamoto, Near infrared spectral patterns of fatty acid
analysis from fats and oils, J. Am. Oil Chem. Soc. 68 (1991) 827–833, https://doi.
org/10.1007/BF02660596.

[40] V. Baeten, R. Aparicio, N. Marigheto, R. Wilson, Olive oil analysis by infrared and
Raman spectroscopy: methodologies and applications, in: J. Harwood, R. Aparicio
(Eds.), Handbook of Olive Oil: Analysis and Properties, Springer, Boston, MA,
2000, pp. 209–248, https://doi.org/10.1007/978-1-4757-5371-4_8.

[41] R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds,
sixth edition, John Wiley & Sons, New Jersey, 1998, ISBN978-0471134572.

[42] S. Ng, O. Lasekan, K. Muhammad, R. Sulaiman, N. Hussain, Effect of roasting
conditions on color development and Fourier transform infrared spectroscopy
(FTIR-ATR) analysis of Malaysian-grown tropical almond nuts (Terminalia catappa
L.), Chem. Cent. J. 8 (2014) 55, https://doi.org/10.1186/s13065-014-0055-2.

[43] V. Baeten, J.A. Fernández Pierna, P. Dardenne, M. Meurens, D.L. García-González,
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