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Abstract 15 

Reliable analytical methods to authenticate high-quality and economically valuable cocoa 16 

beans are highly desirable, and NIR spectroscopy stands out as a rapid and non-17 

destructive alternative. This study employs NIR for the authentication and differentiation 18 

of 19 whole Forastero cocoa beans from Eastern Amazon (Pará, Brazil), based on their 19 

fermentation status and genetic profiles. Partial Least Squares Discriminant Analysis 20 

(PLS-DA) models in wavelength ranges of 400-700 nm, 1400-1600 nm, and 1900-2500 21 

nm, demonstrated high sensitivity and specificity in discriminating fermented from 22 

unfermented beans, regardless of genotype. Various compounds, including proteins, 23 

lipids, carbohydrates, anthocyanins, and theobromine, provide crucial insights into the 24 

spectral regions essential for distinction. The variable importance in projection (VIP) 25 

score value greater than 1 was used to select relevant variables, and Linear Discriminant 26 

Analysis (LDA) was performed in both the visible range (472 nm and 636 nm) and the 27 

infrared range (2096 nm and 2278 nm), demonstrating that absorbances at two specific 28 

wavelengths are sufficient for discrimination. The t-distributed stochastic neighbor 29 

embedding (t-SNE) indicated a segregation trend of the genotypes based on classification 30 
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by major genetic groups in unfermented beans, suggesting that the biochemical 31 

characteristics shared by them are more prominent before fermentation. The PLS-DA 32 

models based on complete vis/NIR spectra showed comparable results in discriminating 33 

the 19 cocoa genotypes in both fermented (0.14% prediction error) and unfermented 34 

beans (0.16% prediction error). The model's classification errors can be attributed to 35 

shared genetic ancestry among the samples, primarily in unfermented beans. This 36 

research corroborates the effectiveness of vis/NIR spectroscopy as a straightforward tool 37 

for whole cocoa bean authentication, providing rapid insights into genetic diversity 38 

regardless of their fermentation state. 39 

Keywords: Theobroma cacao; Near-Infrared spectroscopy; chemometrics; fermentation; 40 

cocoa genotypes, authentication. 41 

1. Introduction 42 

Cocoa (Theobroma cacao L.) and its products, such as chocolate, are widely consumed 43 

globally and are valued for their flavor and health benefits. Presently, Brazil contributes 44 

with 273,873 tons of cocoa beans annually, ranking sixth in global production. Over half 45 

of the Brazilian production comes from the Amazon region, mainly from state of Pará, 46 

which is known for its competitive advantage over other regions, with high productivity 47 

(955 kg/ha in dried cocoa beans), low production cost (US$ 750.00 per ton produced) 48 

(Mapa, 2023), and potential for producing fine cocoa (Collin et al., 2023). 49 

The cocoa from the Brazilian Amazon is traditionally classified as Forastero. In 2008, 50 

a new subclassification for this variety was proposed by Motamayor et al. (2008), 51 

including Marañon (PA), Curaray (AGU), Iquitos (IMC), Nanay (NA), Contamana 52 

(SCA), Amelonado (BE), Purús (CAB), Nacional (MO), and Guiana (CJ), but the authors 53 

reported difficulties in accessing Brazilian germplasm. Beyond its inherent genetic 54 

diversity, Pará's success in cocoa production is attributed to the planting of 20 cocoa 55 

genotypes with high yield and disease resistance, developed and selected in the 1970s by 56 

the Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC). Today, 57 

approximately 15 million seeds of these genotypes are distributed annually to local 58 

producers (MAPA, 2023). 59 
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The quality characteristics of cocoa beans are associated with both the cocoa genotype 60 

and post-harvest processing stages, particularly fermentation and drying (Santander 61 

Muñoz et al., 2020). 62 

Genetic diversity influences the composition in the beans, such as proteins, lipids, 63 

carbohydrates, and phenolic compounds, affecting the microbial profile of the pulp and 64 

the biochemical changes that occur in the beans during fermentation, responsible for the 65 

development of color and formation of the flavor of commercial cocoa beans (Santander 66 

Muñoz et al., 2020). After fermentation, the beans are dried and supplied to traders. A 67 

common adulteration practice involves mixing fermented beans with unfermented beans 68 

due to high demand (Aikpokpodion & Dongo, 2010). 69 

The co-plantation of genotypes and the blending of beans with different post-harvest 70 

processing conditions complicate the identification of high-economic-value genotypes 71 

and the assurance of the quality of derived products, like chocolate. 72 

In light of these challenges, near-infrared spectroscopy (NIR) has been employed as a 73 

rapid method to predict biochemical quality parameters, offering qualitative and 74 

quantitative methods for the characterization, classification, and authentication of cocoa 75 

and chocolate samples, as reviewed by Teye et al. (2020). 76 

The application of NIR for differentiation between fermented and unfermented beans 77 

has been the subject of intensive studies (Sunoj, Igathinathane & Visvanathan, 2016; 78 

Hashimoto et al, 2018; Hernandez et al., 2022), with recent research highlighting the 79 

potential of NIR for the classification and differentiation of intact cocoa bean genotypes 80 

(Barbin et al., 2018, Cruz-Tirado et al., 2020), offering benefits such as process speed and 81 

waste reduction. However, both studies were limited to analyzing only five genotypes. 82 

This study aims to evaluate the efficacy of vis/NIR spectroscopy in distinguishing 83 

Forastero cocoa genotypes from the Brazilian Amazon and reducing the complexity and 84 

cost of analysis in differentiating between fermented and unfermented beans. A 85 

comprehensive sample set was used, along with physicochemical and genetic data, to 86 

enrich the interpretation of NIR spectra. This approach provided a more robust 87 

understanding of the unique characteristics of cocoa beans and contributed to their 88 

authentication. 89 

2. Materials and Methods 90 

2.1. Sample collection 91 

Jo
urn

al 
Pre-

pro
of



4 
 

Nineteen Forastero cocoa genotypes from eastern Amazonia were selected based on 92 

their importance to the cocoa industry and are presented in (Table 1). Around 70 fruits of 93 

each genotype were kindly collected in July 2020 by the Comissão Executiva do Plano 94 

da Lavoura Cacaueira (CEPLAC) in Medicilândia and Tucumã, Pará, Brazil. Since the 95 

genotype determines the basic chemical composition of the beans and fermentation 96 

induces additional chemical changes, the beans were removed from the fruits and 97 

approximately 1 kg of each genotype was fermented within the same fermentation box 98 

(with genotypes isolated in nylon bags) for 6 days under the same temperature and relative 99 

humidity conditions. Three genotypes were randomly chosen to be fermented in duplicate 100 

(P7, CCN51, and CAB270). Unfermented and fermented beans were sun-dried for 5 days 101 

until their moisture content reached <8 %, and stored under refrigeration until analyses. 102 

No additional processing, such as grinding or peeling, was performed.  103 

2.2 Genetic classification of the cocoa genotypes  104 

The genetic diversity of the 19 cocoa genotypes in the Eastern Amazonia was analyzed 105 

by De Oliveira et al. (Unpublished results) based on DNA polymorphisms using 15 106 

standard cocoa microsatellite markers. Genetic data were analyzed using the 107 

STRUCTURE v2.3.4 software (Pritchard et al., 2000), which employs a Bayesian 108 

approach to model the probability of a sample belonging to one of K groups (K=10, 109 

representing the groups proposed by Motamayor et al. (2008): Marañón, Curaray, Criollo, 110 

Iquitos, Nanay, Contamana, Amelonado, Purús, Nacional, and Guiana). For each 111 

genotype, STRUCTURE provided a set of membership coefficients (Q values) 112 

representing the estimated proportion of its ancestry. 113 

The coefficient of membership (Q) for an individual in each specific group indicates 114 

the proportion of their ancestry attributed to that group, ranging from 0 to 1, where 0 115 

denotes no ancestry in the group, and 1 indicates complete contribution. The two highest 116 

membership coefficients (Q1 and Q2) represent the predominant genetic composition and 117 

are presented in Table 1. 118 

Table 1. Cocoa genotypes from Eastern Amazonia, origin, and classification of the 119 

majority genetic groups based on the coefficient of membership (Q). 120 

Genotype Origin Q1 
Genetic 

group 
Q2 Genetic group 

CA6 Medicilândia 0.3239 Iquitos 0.2041 Nanay 

PA169 Tucumã 0.4665 Marañón 0.2535 Amenolado 

PA121 Medicilândia 0.9240 Marañón 0.924 Marañón 
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PA195 Tucumã 0.6744 Marañón 0.6744 Marañón 

BE10 Medicilândia 0.3022 Nanay 0.2576 Manañón 

CAB499 Tucumã 0.5731 Purús 0.5731 Purús 

CCN51 Medicilândia 0.4608 Criollo 0.2930 Iquitos 

IMC67 Medicilândia 0.6602 Iquitos 0.6602 Iquitos 

CAB324 Tucumã 0.462 Purús 0.4598 Nanay 

CAB214 Medicilândia 0.5386 Purús 0.4155 Contamana 

MA11 Tucumã 0.4192 Purús 0.2835 Amelonado 

P7 Medicilândia 0.5295 Nanay 0.4257 Contamana 

RB36 Tucumã 0.9511 Purús 0.9511 Purús 

RB40 Medicilândia 0.8646 Purús 0.8646 Purús 

CAB270 Medicilândia 0.3238 Purús 0.2792 Guiana 

MO1 Medicilândia 0.3729 Amelonado 0.265 Purús 

CAB208 Medicilândia 0.7415 Purús 0.7415 Purús 

MA15 Medicilândia 0.8389 Purús 0.8389 Purús 

CAB 314 Tucumã 0.4860 Purús 0.3489 Nanay 

2.3 Physicochemical analysis 121 

The physicochemical characteristics of cocoa beans (Table 2) were obtained using 122 

standard analytical methods according to the AOAC (2023): moisture (931.04), lipid 123 

(963.15), total soluble solids (932.12), and protein content (970.22). The pH was 124 

measured according to the protocol of Senanayake et al. (1997). The fermentation index 125 

(FI) was determined using the spectrophotometric method described by Gourieva & 126 

Tserrevitinov (1979), based on the degradation of anthocyanins during fermentation and 127 

calculated by the ratio of the absorbance at 460 nm and 530 nm. The cut test correlates 128 

visual characteristics with chemical composition: unfermented beans have a predominant 129 

violet color while the brown color is characteristic of properly fermented cocoa. A 130 

longitudinal section was carried out on 30 randomly selected cocoa beans of each 131 

genotype to evaluate the degree of fermentation and the results were expressed as a 132 

percentage of violet, partially brown, and brown beans (ISO 2451, 2017). The color was 133 

measured directly on the inner surface (cotyledons) of the beans after the cut test using a 134 

Minolta colorimeter and the yellowness parameter (b*) was evaluated (Barbin et al., 135 

2018). 136 
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Table 2. Values obtained for the physicochemical analyses of fermented and unfermented cocoa beans. 137 

 DW: Dry Weight; (nd)- not determined: genotype was not evaluated for fermented beans  138 

 

 

Genotypes 

Total soluble solids (°Brix) pH 

Lipids (g/100g DW)  Proteins (g/100g DW)  
Fermented index 

 
External Internal External Internal 

Fermented unfermented Fermente unferment Fermented unfermented Fermented unferment Fermented unfermented Fermented unfermented Fermented unferment 

CAB499 2.96±0.19 12.57±0.35 110±0.00 10.00±0.00 5.98±0.00 4.49±0.00 5.11±0.21 6.71±0.01 32.85±1.61 32.10±1.95 18.59±0.45 17.87±0.30 0.97±0.00 0.64±0.02 

MA 15 3.08±0.00 12.80±1.20 13±0.00 11.00±0.00 5.81±0.01 4.81±0.00 4.99±0.01 6.68±0.00 30.27±0.06 30.93±0.37 18.97±0.60 17.93±0.00 1.14±0.00 0.64±0.03 

IMC 67 3.37±0.02 12.54±0.71 14±0.00 10.50±0.71 6.15±0.01 4.47±0.01 4.91±0.01 6.71±0.00 31.30±1.36 29.46±2.47 17.05±2.11 16.30±0.14 1.13±0.02 0.64±0.02 

MA 11 4.96±0.06 7.53±0.81 11.5±0.07 11.50±0.71 5.75±0.07 4.74±0.01 4.82±0.01 6.65±0.01 35.40±0.44 31.59±0.68 19.15±0.01 18.12±0.30 1.11±0.19 0.41±0.00 

RB 36 4.35±0.23 16.63±0.54 12±0.00 7.50±0.71 5.91±0.01 5.42±0.00 4.87±0.00 6.77±0.01 30.05±1.39 32.93±1.31 18.44±0.15 17.72±0.60 1.06±0.01 0.58±0.02 

RB40 5.09±0.07 8.41±0.01 11±0.00 10.50±0.71 6.04±0.01 5.72±0.00 5.32±0.04 6.73±0.00 30.37±0.93 32.61±1.84 20.29±0.74 19.16±0.60 1.35±0.03 0.75±0.02 

BE10 3.72±0.18 9.01±1.04 13.5±0.07 12.50±0.71 5.79±0.00 4.56±0.01 4.85±0.00 6.59±0.01 31.67±2.09 30.49±0.62 16.71±0.75 16.62±0.00 1.04±0.02 0.66±0.05 

PA 169 3.98±0.39 10.40±0.00 13±0.14 11.50±0.71 5.83±0.00 5.33±0.01 4.92±0.01 6.67±0.01 36.52±0.90 38.48±2.00 17.89±0.31 18.32±0.01 1.11±0.04 0.69±0.06 

PA121 3.66±0.10 9.3±0.58 14±0.00 13.50±0.71 5.76±0.01 4.87±0.00 4.94±0.01 6.53±0.00 34.78±0.31 31.55±1.29 18.09±0.30 16.81±0.30 1.13±0.03 0.77±0.01 

MO1 3.78±0.17 8.16±1.30 12±0.14 11.50±0.71 5.91±0.00 4.59±0.01 5.01±0.01 6.38±0.02 28.34±0.90 32.93±0.34 16.74±0.46 16.52±0.45 1.13±0.10 0.76±0.02 

CA6 3.20±0.05 8.43±0.37 12±0.00 9.00±0.00 6.08±0.00 4.90±0.01 5.21±0.01 6.65±0.01 29.74±2.87 29.76±1.18 18.57±0.15 18.59±0.15 1.53±0.02 0.57±0.01 

CAB324 3.01±0.07 8.06±1.14 12±0.00 12.50±0.71 6.02±0.00 4.47±0.02 5.15±0.01 6.51±0.02 30.50±2.14 30.62±0.63 16.40±0.30 17.26±0.60 1.34±0.05 0.80±0.08 

CAB208 4.45±0.26 11.07±0.23 12.5±0.07 10.50±0.71 6.33±0.04 5.30±0.00 5.17±0.04 6.67±0.02 26.31±0.51 27.48±2.54 17.70±0.90 16.32±0.15 1.54±0.04 0.66±0.01 

CAB314 (nd) 11.05±0.70 (nd) 10.87±0.50 (nd) 4.27±0.00 (nd) 6.07±0.00 (nd) 31.89±1,25 (nd) 17.98±0.45 (nd) 0.66±0.00 

PA 195 5.27±0.23 12.31±1.37 11±0.00 12.00±0.00 5.65±0.21 5.01±0.01 5.08±0.03 6.63±0.01 30.64±1.30 33.76±1.97 18.43±0.45 19.33±0.30 0.96±0.03 0.96±0.02 

CAB214 4.39±0.16 5.05±0.01 9.5±0.07 9.50±0.71 5.93±0.00 5.80±0.01 5.12±0.00 6.71±0.02 29.51±0.67 30.32±0.42 18.94±0.31 18.65±0.01 0.97±0.02 0.97±0.00 

P7 2.81±0.06 10.25±0.87 10±0.05 9.50±0.71 5.79±0.06 4.41±0.01 5.08±0.05 6.66±0.01 33.86±2.68 33.93±2.42 18.92±0.96 17.75±0.16 1.01±0.04 0.52±0.00 

CAB270 3.00±0.26 10.43±0.32 15±0.00 12.00±0.00 5.99±0.15 4.67±0.01 4.99±0.19 6.66±0.01 30.23±1.76 30.09±1.56 19.82±1.38 15.75±0.90 1.08±0.01 0.72±0.02 

CCN51 3.61±0.24 10.40±0.01 12.5±0.10 11.00±0.00 5.84±0.04 4.36±0.01 5.08±0.10 6.41±0.02 30.74±1.39 31.77±1.03 17.96±1.57 15.76±0.01 1.16±0.11 0.68±0.02 

Mean 3.72 10.5 12.28 10.95 5.91 4.90 5.03 6.62 31.34 31.66 18.35 17.49 1.14 0.66 

Range 2.77-5.27 7.53-16.63 9.5-15 9.5—13.5 5.75-6.33 4.36-5.72 4.82-5.32 6.37-6.77 26.31-36.64 27.48-38.48 16.4-20.85 15.75-19.33 0.95-1.54 0.41-0.79 

Jo
urn

al 
Pre-

pro
of



7 
 

2.4 Spectral acquisition  139 

Spectral data from unfermented and fermented cocoa beans were obtained in 140 

reflectance mode and recorded as absorbance (log 1/R) using a XDS Near-Infrared-Rapid 141 

Content Analyzer (Foss NIRSystems, Denmark). The wavelength range spanned from 142 

400 to 2500 nm, with a resolution of 2 nm. Both the visible and near-infrared (vis/NIR) 143 

ranges were included. For each of the 19 genotypes, spectra were obtained from 10 whole 144 

beans randomly selected from a set of approximately 1 kg, except for the duplicate 145 

fermented samples P7, CCN51, and CAB270, represented by 20 beans. Cocoa beans were 146 

scanned using a ring sample cup, and for each cocoa bean, the spectra acquisition was 147 

carried out on both sides in stationary mode with 32 scans taken at a single spot. The 148 

spectra were preprocessed by auto-linearization and the average spectrum was kept. All 149 

the beans were measured randomly (it means that the 10 or 20 beans of each genotype 150 

were not measured consecutively). The mean spectra per genotype were calculated and 151 

are presented in Fig.S.1(Supplementary material) 152 

2.5 Data processing 153 

The data analysis were performed on R version 4.2.2 (RStudio Team, 2020) with the 154 

caret (Kuhn, 2022), rchemo (Lesnoff, 2022), and mdatools (Kucheryavskiy, 2020) 155 

packages. The Mahalanobis distance and the Z-score method were used to check possible 156 

outliers, but no samples were discarded (Pierna et al., 2002; Aggarwal et al. 2019). In this 157 

research, 4 different pre-processing combinations were tested: Standard Normal Variable 158 

(SNV), Savitzky-Golay (SG), SNV followed by SG and SG followed by SNV. The PCA 159 

of the raw and pre-processed data were observed, and the pre-processing that presented 160 

the best separation between the two groups was selected The preprocessing applied was 161 

Savitzky-Golay (SG) with a window size of 21 points (width = 21), a derivative of the 162 

first order (dorder = 1), and a polynomial degree of the second order (porder = 2).  163 

2.5.1 Exploratory data analysis 164 

For exploratory analysis of NIR spectra, principal component analysis (PCA) and t-165 

distributed stochastic neighbor embedding (t-SNE) were applied to evaluate possible 166 

separation patterns of cocoa beans (Sentellas & Saurina, 2023; Oña et al., 2020). To assess 167 

the genetic diversity of the 19 genotypes, the spectra were analyzed separately in two 168 

datasets: fermented and unfermented beans.  169 

Jo
urn

al 
Pre-

pro
of



8 
 

2.5.2 Discriminant Analysis  170 

PLS-DA models were chosen for the bean discriminations as it has been frequently 171 

used to classify cocoa samples (Teye et al., 2020; Sentellas & Saurina, 2023). The data 172 

was split into calibration and validation sets.  173 

For the discrimination of fermented from unfermented samples, a hold-out validation 174 

was performed. The calibration set included 280 beans (70 % of all the beans), 147 being 175 

from fermented beans and 133 from unfermented ones. The validation set included 120 176 

beans (30 % of all beans), 63 being from fermented beans and 57 from unfermented ones. 177 

The separation between the calibration and the validation sets was created by the R 178 

function “createDataPartition” from the caret package (Kuhn, 2022), assuring an equal 179 

repartition of fermented and unfermented beans in both datasets. The optimal number of 180 

latent variables of those models was estimated by 10-fold cross-validation based on the 181 

area under the receiver operating characteristic curve (AUC), which represents the overall 182 

ability of the model to correctly classify predictions Eq. (A.1). 183 

A PLS-DA model was then constructed on the whole spectral range (400-2500 nm) 184 

and the variable importance in projection (VIP) method was used as a strategy to select 185 

the most important wavelengths to distinguish groups of fermented and unfermented 186 

beans (Oliveira et al., 2023). The VIP score value greater than 1 was used to select 187 

relevant variables, and new PLS-DA models were constructed in the regions 400-700 nm, 188 

1400-1600 nm, 1900- 2500 nm, 2000-2250 nm, and 2250-2350 nm. In addition to the 189 

PLS-DA models, Linear Discriminant Analysis (LDA) models were constructed using 190 

absorbances at two wavelengths in both the visible (472 nm and 636 nm) and infrared 191 

(2096 nm and 2278 nm) ranges.  192 

For discrimination models between genotypes in fermented cocoa beans, the 193 

calibration set was formed with 147 beans (70 % of all beans), with each of the 18 194 

genotypes represented by 7 beans, except for the duplicate genotypes (P7, CCN51, and 195 

CAB270) represented by 14 beans. The validation set was formed with 63 beans (30 % 196 

of all samples), with each genotype represented by 3 samples, except P7, CCN51, and 197 

CAB270 represented by 6 samples.  198 

For the unfermented beans, the same logic was employed. The calibration set was 199 

therefore formed with 133 beans (70 % of all beans), with each of the 19 genotypes 200 

represented by 7 beans. The validation set was formed with 57 beans (30 % of the total 201 
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beans), with each genotype represented by 3 beans. PLS-DA models were then 202 

constructed over the entire spectral range (400–2500 nm). 203 

The performance of the models was evaluated using three metrics derived from the 204 

confusion matrix, which compares the class assigned to the model with the real class of 205 

the samples. These metrics include sensitivity, indicating the model's ability to detect 206 

positive cases among truly positive samples Eq. (A.2); specificity, reflecting the model's 207 

ability to identify negative cases among truly negative samples Eq. (A.3); and accuracy, 208 

representing the model's ability to correctly classify the samples Eq. (A.4) (Hossin & 209 

Sulaiman, 2015).  210 

3. Results and Discussion 211 

3.1. Discrimination between fermented and unfermented beans 212 

3.1.1. Exploratory data analysis 213 

The mean raw spectra of all fermented and unfermented genotypes were obtained and 214 

presented in Fig. 1a. The similarity of spectral profiles is inherent to the species 215 

(Theobroma cacao) and is comparable to findings in other studies (Barbin et al., 2018; 216 

Mandrile et al., 2019; Cruz-Tirado et al, 2020; Drees et al., 2023). Both sets of samples 217 

exhibited a similar trend in absorbance but differed mainly around 500 nm and in the 218 

range between 1500 and 2500 nm, where unfermented samples showed higher absorbance 219 

than fermented ones (Fig. 1a). Differences in absorbance may be linked to the 220 

biochemical changes in the composition of the cocoa beans after fermentation (Quelal-221 

Vásconez et al., 2019).  222 

Spectra was preprocessed using first derivative Savitzky-Golay (SG) second 223 

polynomial order with 21 points (Fig. 1b), aiming to remove absolute variations in 224 

absorbance and unwanted scatter additive effects due to differences in the optical path 225 

length and fluctuations of the light source that commonly affect NIR spectra.  226 
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 227 

Fig. 1. Mean spectra of the fermented (grey line) and unfermented (green line) cocoa bean 228 

samples. a. raw b. after the first derivative Savitzky-Golay preprocessing (width = 21, 229 

order = 2a). 230 

PCA was performed to identify possible clusters based on the pre-processed spectra of 231 

the different datasets. Despite the samples coming from different origins, there was no 232 

influence of location (Medicilândia and Tucumã) on the results, but in line with 233 

expectations, the fermentation process caused evident clustering of the NIR spectra. 234 
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Confidence ellipses with a 99 % confidence level were added and showed an important 235 

potential to discriminate fermented from unfermented beans (Fig. 2). 236 

 237 

Fig. 2. PCA of NIR spectra of the fermented and unfermented cocoa bean samples. 238 

Ellipses with confidence levels of 99 % were drawn for each group. 239 

The spectrum of the MA 11 genotype in fermented beans and CA 6 in unfermented 240 

beans showed atypical variations, suggesting potential errors during sample collection or 241 

analysis. A remaining unfermented spectrum of the CAB 214 genotype was not assigned 242 

to any group but was positioned close to the spectra of fermented samples in the PCA. 243 

This might be related to the physical-chemical characteristics of the beans of this 244 

genotype, which have external similarities with fermented beans (Table 2). 245 

Some parameters are crucial in evaluating the quality of fermentation. For instance, to 246 

achieve a high content of aromatic compounds, an internal pH of around 5 is expected for 247 

fermented beans (Castro-Alayo et al., 2019). During the fermentation process, the sucrose 248 

concentration tends to decrease. This reduction is indicative of microbial activity and is 249 

reflected in the total soluble solids (°Brix). The beans must have a fermentation index 250 

(FI) greater than 1 to be considered adequately fermented (BARIAH et al., 2014). 251 

According to the data presented in Table 2, the parameters used to characterize fermented 252 

beans are within the expected range. This observation may justify the successful 253 

distinction of the Principal Component Analysis (PCA) of the NIR spectra. 254 
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The loadings of the first principal component of this PCA were plotted to see which 255 

spectral regions had the most influence on the separation between the two groups. 256 

However, the loadings showed the importance of numerous regions and did not bring 257 

much information about specific bands. 258 

Despite being an unsupervised method, it already showed its potential for 259 

discrimination between fermented and unfermented cocoa beans in our samples. 260 

However, it did not highlight specific discriminating bands. Therefore, a PLS-DA (a 261 

supervised method) was performed to test the classification ability of the spectra. 262 

3.1.2. Discriminant Analysis  263 

The supervised PLS-DA method was used on the whole spectral range (400-2500 nm) 264 

and the VIP scores of this model were then calculated and plotted (Fig. 3) to explore the 265 

discriminating capacity of specific variables in relation to the classes of interest. VIP is a 266 

commonly applied method for selecting relevant variables and indicates the relative 267 

importance of wavelengths in a PLS model. Higher values indicate more significant 268 

contributions to the model (Wise et al., 2006). 269 

 270 

Fig. 3. VIP scores of the PLS-DA model (400-2500 nm) for the discrimination of 271 

fermented and unfermented cocoa beans. 272 

The PLS-DA model constructed using only the most important wavelengths may 273 

provide better models than using the entire spectrum, in certain applications (Oliveira et 274 
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al., 2023). Acknowledging this, new models were built based on the wavelength ranges 275 

associated with VIP scores above one: the first within 400-700 nm, the second within 276 

1400-1600 nm, and the third within 1900-2500 nm, which was subsequently subdivided 277 

into the 2000-2250 nm range and the 2250-2350 nm range (Table 3). 278 
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Table 3. Characteristics and performances of the PLS-DA models for discriminating 279 

fermented from unfermented cocoa beans. 280 

  
Raw 

spectra 

400-700 

nm 

1400-1600 

nm 

1900-2500 

nm 

2000-2250 

nm 

2250-2350 

nm 

NLV* 3 3 2 3 2 2 

Sensitivity 1 1 1 1 1 1 

Specificity 1 1 0.984 1 0.984 0.984 

Accuracy 1 1 0.992 1 0.992 0.992 

* Number of latent variables 281 

The tested models all exhibited high accuracy in distinguishing between fermented and 282 

unfermented beans. Similarly, the specificity was consistently high. This highlights the 283 

intricate variances in chemical composition among the samples, which influence the 284 

wavelengths across all chosen spectral ranges. 285 

Our results demonstrate that, despite the genetic variability of the cocoa genotypes 286 

analyzed, the distinctive characteristics between fermented and unfermented beans 287 

remained distinguishable through NIR spectroscopy analysis. This observation is 288 

supported by the physical-chemical differences induced by fermentation, as can be 289 

observed through PCA (Fig. S.2 see supplementary material). For example, fermented 290 

samples have lower acidity levels and total soluble solids content and are less bitter and 291 

astringent. 292 

Teye et al. (2014) and Hernandez-Hernandez et al. (2022) have also reported that 293 

fermentation significantly modifies the NIR spectral profiles of cocoa beans. Kutsanedzie 294 

et al. (2017) note that fermentation changes the content of phenolic compounds and other 295 

metabolites in cocoa beans, impacting the chemical composition and sensory 296 

characteristics.  297 

3.1.2.1 PLS-DA on the spectral range of 400-700 nm 298 

The wavelength range of 400-700 nm corresponds to the visible part and is influenced 299 

by pigments. The bands observed at 472 nm and 636 nm (Fig. 3) are associated with the 300 

presence of anthocyanins, abundant in Forastero cocoa (Strayer, 1995; Camu et al., 2008). 301 

During fermentation, anthocyanins are hydrolyzed and cause a color change in the beans 302 

from violet to brown (Melo et al., 2021). The reduction in anthocyanin concentrations is 303 
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evident in the spectra of fermented and unfermented beans, mainly in the 610 nm band 304 

(Fig. 1b). The results obtained through the spectra align consistently with the results of 305 

traditional methods based on changes in the color of the beans. 306 

The widely used cut test involves visual analysis, displaying the percentage of violet 307 

and brown beans (Fig. 4a). Complementary chemical methods, such as the fermentation 308 

index (FI), can also be used (Fig. 4b) (Bariah, 2014), and color analysis using the CIEL* 309 

system provides another alternative for evaluating fermentation (Fig. 4c). These results 310 

suggest that the internal biochemical transformations occurring in cocoa beans during the 311 

fermentation process can be easily observed and quickly accessed from whole beans. 312 

The analysis in the visible range of the spectra is valuable for both cocoa producers 313 

and industries, as it avoids the cost of using more expensive NIR technologies, in addition 314 

to providing information about the fermentative quality of the beans without the 315 

drawbacks of traditional methods, such as subjectivity (cut test), long processing time, 316 

and the use of toxic substances (fermentation index) and destructiveness (color analysis). 317 

Furthermore, an LDA analysis was performed at wavelengths 472 nm and 636 nm and 318 

showed a good performance (Table S.1), reinforcing the use of visible spectral range in 319 

discrimination from whole beans, in addition to potentially reducing the transferability 320 

costs of the analysis. 321 
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 322 

Fig. 4 Traditional methods based on color changes to classify fermented (F) and 323 

unfermented (UF) cocoa beans: a. Percentage of violet beans observed after a cut test, 324 

characteristic of unfermented beans. b. Fermentation index: FI values ≥1 indicate well-325 

fermented beans, while FI<1 corresponds to poorly or unfermented beans. c.  Yellowness: 326 

higher b* values correspond to brown pigments characteristic of fermented beans. 327 

*Student's t-test, p < 0.05. 328 

3.1.2.2 PLS-DA on the spectral range of 1400-1600 nm 329 

The model constructed in the wavelength range of 1400 nm to 1600 nm was also 330 

efficient in discriminating between fermented and unfermented beans. The band around 331 

1450 nm is related to OH vibration, found in water and also in carbohydrates and 332 

polyphenols (Afoakwa et al., 2013). However, since both sample groups were dried until 333 
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reaching moisture content close to 8%, water should not be the variable justifying the 334 

performance of this model. 335 

Proteins, with a characteristic band around 1470 nm linked to the NH2 structure 336 

(Osborne, Fearn, and Hindle, 1993), might be a differentiator between the groups. 337 

Furthermore, the spectral range between 1470 nm and 1639 nm has been associated with 338 

carbohydrates (Krähmer et al., 2015), and the band at 1596 nm with starch and glucose 339 

(Mandrile et al., 2019). Unfermented beans, even when dried, retain a layer of pulp rich 340 

in carbohydrates and soluble solids, unlike fermented ones, where this layer is consumed 341 

by fermentation. This variation is reflected in the total soluble solids values of the outer 342 

part of the beans, with the average of the fermented ones (3.72 ºBrix) being lower than 343 

that of the unfermented ones (10.5 ºBrix). 344 

3.1.2.3 PLS-DA on the spectral range of 1900-2500 nm 345 

The third model was built in the spectral range of 1900-2500 nm and effectively 346 

discriminated between fermented and unfermented cocoa beans. The region near 1950 347 

nm can be associated with the O-H combination band (Forte et al., 2022), the peak around 348 

2100 nm corresponds mainly to starch (Cozzolino, Degner & Eglinton, 2014), cellulose 349 

is associated with the wavelength of 2199 nm (Okiyama et al., 2017; Wang et al., 2018) 350 

and the absorbance around 2057 nm can be attributed to protein (Caporaso et al., 2018). 351 

Several other compounds may have influenced the efficiency of this model, given that 352 

the contents of cocoa bean shells include lipids, proteins, starch, theobromine, and 353 

caffeine, among others (Mandrile et al, 2019). New PLS-DA models were then developed 354 

in the 2000-2250 nm and 2250-2350 nm ranges, selected according to the VIP scores, to 355 

assess whether smaller spectral regions, and therefore spectrometers with reduced 356 

spectral ranges, could provide performances close to those obtained with the entire 357 

spectral range.  358 

In the range of 2000-2250 nm, the bands around 2050 nm (Forte et al., 2022) and 2180 359 

nm (Samadi, Wajizah & Zulfahrizal, 2021) are associated with the presence of proteins. 360 

Interestingly, the average protein contents of fermented whole beans (18.35 g/100g DW) 361 

and unfermented beans (17.49 g/100g DW) were very similar (Table 2).This region may 362 

be relevant due to qualitative differences in the proteins that undergo hydrolysis by the 363 

action of the aspartic endoprotease and carboxypeptidase enzymes during fermentation 364 

(Santander Muñoz et al., 2020)  365 
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The range of 2250-2350 nm is associated with lipid content. According to Veselá et 366 

al. (2007), the most important bands related to lipid variation are at 2322, 2334, and 2360 367 

nm. This component is abundant in cocoa beans and tends to decrease during fermentation 368 

(Aremu, Agiang & Ayatse, 1995). However, similar to proteins, the average lipid values 369 

for unfermented beans (31.66 g/100g DW) and fermented beans (31.64 g/100g DW) are 370 

very close (Table 2). The model may have been influenced by differences in the nature 371 

of these components or their distribution in the cocoa bean shells, reinforcing that the 372 

differences indicated by the NIR spectra do not necessarily reflect the internal 373 

characteristics of the beans and should be investigated further. 374 

Compared to other studies, cocoa from state of Pará displays less variability between 375 

genotypes concerning protein and lipid values (Table 2). Different cocoa genotypes from 376 

Mexico have a protein content ranging from 11.93 to 29.13 g/1 and lipid content ranging 377 

from 18.65 to 49.48 g/100 g DW (Hernández-Hernández et al., 2022). Another study 378 

conducted in Peru on 30 cocoa genotypes revealed a protein content ranging from 17.51 379 

to 30.87 g/100g DW (Oliva-Cruz et al., 2021), and Colombian cocoa presented an average 380 

protein content of 30.82 g/100g DW for different genotypes, with a coefficient of 381 

variation of 21.81% (Chang et al., 2014). 382 

Finally, an LDA model was built using two wavelengths (2096 nm and 2278 nm). This 383 

may be related to the concentrations of starch (2100 nm), sucrose (2088 nm), theobromine 384 

(2094 nm), and polyphenols (2150-2250 nm), which are present in the cocoa bean shells 385 

and are affected by the biochemistry of fermentation (Hernández-Hernández et al., 2022). 386 

The LDA model was able to perfectly discriminate between fermented and 387 

unfermented cocoa beans, achieving maximum sensitivity, specificity, and accuracy 388 

parameters. This suggests that discrimination can be effectively achieved using the 389 

absorbances at two specific wavelengths, eliminating the need for a wide-range 390 

spectrometer. 391 

3.2. Discrimination of Forastero cocoa genotypes from the Brazilian Amazon 392 

3.2.1. Exploratory data analysis 393 

Our work, for the first time, explores the genetic diversity of 19 Forastero cocoa 394 

genotypes from the Brazilian Amazonia through NIR spectroscopy. The differences in 395 

absorbance intensities of the genotypes’ NIR spectra suggest that their particular 396 

characteristics can be detected based on spectroscopic information (Fig. S.1).  397 
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Previous works already mentioned that genetic differences could be observed through 398 

NIR spectral information (Castro et al., 2022; Cruz-Tirado et al., 2020). Nevertheless, the 399 

fermentation process may lead to a homogenization of differences among genotypes, 400 

thereby posing a challenge in distinguishing fermented samples, potentially due to the 401 

maintenance of each genotype's intrinsic biochemical attributes (Hernandez-Hernandez 402 

et al., 2022). In contrast, Ferreira et al. (2022) have demonstrated that cocoa fermentation 403 

can assist in classifying samples based on their geographical origins. 404 

To comprehensively investigate the spectral variations, we analyzed the two distinct 405 

data sets: fermented and unfermented beans. Preliminary exploratory investigations were 406 

carried out, utilizing both raw and pre-processed data in PCA and t-SNE analyses but no 407 

clustering patterns were observed among the different genotypes. However, it is worth 408 

noting that the t-SNE of the raw spectra from the unfermented beans showed a tendency 409 

towards segregation based on the majority genetic groups described in Table 1 (Fig. 5). 410 

Despite an insufficient separation for selective discrimination, this result suggests that the 411 

genetic information and inherent biochemical characteristics of the beans are more 412 

evident before fermentation. 413 

 414 

Fig. 5. t-SNE on the raw spectra of the unfermented cocoa beans. The legend displays the 415 

genetic groups of the samples. “A” stands for Amenolado, “C” for Contamana, “I” for 416 

Iquitos, “M” for Marañón, “N” for Nanay, and “P” for Purús.  417 
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However, unlike methods such as PCA or PLS, t-SNE does not explicitly provide a 418 

measure of the importance of variables. In the context of t-SNE, the main focus is the 419 

visualization and representation of similarity patterns, not the direct interpretation of 420 

individual variables. To further investigate the genetic diversity of the samples based on 421 

NIR spectra, discriminatory analyzes were performed. 422 

3.2.2. Discriminant Analysis 423 

The construction of PLS-DA models over the entire spectral range (400–2500 nm) for 424 

discriminating cocoa genotypes was proposed using NIR spectra of both fermented and 425 

unfermented beans. The raw and pre-processed spectra (SG) were tested and accuracy 426 

was the metric used to select the best models. 427 

For fermented beans, the model using data pre-processed by SG was the most 428 

effective, achieving an accuracy of 0.86. Among all 63 validation samples, 9 were 429 

classified incorrectly. For unfermented beans, the best model was the one constructed 430 

from raw data, with an accuracy of 0.84. Out of the 57 validation samples, 9 were 431 

incorrectly classified. The confusion matrices of the models are shown, respectively, in 432 

Tables S.2 and S.3 (Supplementary Material). 433 

Various spectral regions are crucial in differentiating cocoa genotypes, as indicated by 434 

the VIP scores in the models. Although the physicochemical data of the genotypes 435 

showed low variability, the composition differences in the beans might relate to 436 

components not assessed in this study, like carbohydrates, phenolic compounds, 437 

alkaloids, pectin, cellulose, hemicellulose, etc. Additionally, the physicochemical 438 

analyses were performed on whole beans, but NIR measurements might have limitations, 439 

as NIR assesses the proportion of light reflected, and deeper layers in solid samples might 440 

not reflect light effectively. 441 

The trend of clustering by genetic group (see 3.2.1) was used to investigate model 442 

classification errors. In fermented beans, only one reference genotype presented a genetic 443 

group in common with the genotype predicted by the PLS-DA model (Table 4). However, 444 

in the model for unfermented beans, most misclassified genotypes shared genetic 445 

ancestry, suggesting that genetic influences on biochemical similarities are more apparent 446 

before fermentation (Table 4).  447 
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Table 4. Comparison of the reference and predicted genotypes for the misclassified 448 

samples for the PLS-DA model built on SG data for the discrimination of the genotypes 449 

of fermented and unfermented cocoa beans. 450 

 Reference 

genotype 

Reference genotype groups (and 

associated Q value) 

Predicted 

genotype 

Predicted genotype groups (and 

associated Q value) 

F
E

R
M

E
N

T
E

D
 

CA6 Iquitos (0.32) - Nanay (0.20) RB40 Purús (0.86) 

CAB208 Purús (0.74) BE10 Nanay (0.30) - Marañón (0.26) 

CAB499 Purús (0.57) CCN51 Criollo (0.46) - Iquitos (0.29) 

CCN51 Criollo (0.46) - Iquitos (0.29) CAB324 Purús (0.46) - Nanay (0.46) 

CCN51 Criollo (0.46) - Iquitos (0.29) P7 Nanay (0.53) - Contamana (0.43) 

MA15 Purús (0.84) P7 Nanay (0.53) - Contamana (0.43) 

P7 Nanay (0.53) - Contamana (0.43) MO1 Amelonado (0.37) - Purús (0.27) 

PA195 Marañón (0.67) CAB214 Purús (0.54) - Contamana (0.42) 

PA195 Marañón (0.67) PA121 Marañón (0.92) 

U
N

F
E

R
M

E
N

T
E

D
 

 

BE10 Nanay (0.30) - Marañón (0.26) CA6 Iquitos (0.32) - Nanay (0.20) 

CAB270 Purús (0.32) - Guiana (0.28) PA169 Marañón (0.47) - Amelonado (0.25) 

MO1 Amelonado (0.37) - Purús (0.27) CAB324 Purús (0.46) - Nanay (0.46) 

MO1 Amelonado (0.37) - Purús (0.27) MA15 Purús (0.84) 

P7 Nanay (0.53) - Contamana (0.43) IMC67 Iquitos (0.66) 

P7 Nanay (0.53) - Contamana (0.43) MA11 Purús (0.42) - Amelonado (0.28) 

PA195 Marañón (0.67) BE10 Nanay (0.30) - Marañón (0.26) 

RB36 Purús (0.95) CAB208 Purús (0.74) 

RB36 Purús (0.95) CAB214 Purús (0.54) - Contamana (0.42) 

Both models exhibited low performance with the P7 genotype, and none of the 451 

erroneously predicted genotypes shared common genetic groups with this reference 452 

genotype, indicating unique compositional traits in these beans. Factors other than 453 

genetics might influence model performance. Notably, the reference genotype P7 and the 454 

predicted genotype IMC67 in the PLS-DA model for unfermented beans exhibit similar 455 

aromatic compositions (Collin et al., 2023). Furthermore, cocoa genotypes descending 456 

from P7 showed significant classification errors in a PLS-DA model using hyperspectral 457 

NIR images for hybrid classification (Cruz-Tirado et al., 2020). The same authors 458 
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reported a 4.4-34.4% prediction error using a PLS-DA model to discriminate five cocoa 459 

hybrids. 460 

The genetic complexity of Brazilian Amazon cocoa beans is challenging even for 461 

conventional analyses, as shown by coefficients of membership that demonstrate a mix 462 

of contributions from different groups to the same genotype (Table 1). While genetic 463 

analyses provide valuable information on the authenticity of cocoa beans, they may not 464 

be the most thorough or practical approach. These analyses are expensive, time-465 

consuming, require specialized equipment and technical know-how, making them less 466 

accessible and limiting their applicability in certain contexts. Furthermore, 467 

misidentification of cocoa genotypes occurs in about 15% to 44% of cases (Motamayor 468 

et al., 2008). 469 

The diversity and complexity are reflected in the bean spectra. Despite this, both 470 

developed PLS-DA models showed great effectiveness in distinguishing Amazonian 471 

cocoa genotypes. They could be further enhanced by broadening the sampling plan to 472 

evaluate the NIR method under realistic conditions, including the incorporation of 473 

comprehensive information about the composition and natural interferences present in the 474 

samples. 475 

The findings of this study are particularly valuable due to the high genetic variability 476 

of cocoa beans. These results emphasize that NIR spectroscopy, being rapid and non-477 

destructive, is a feasible tool for authenticating cocoa genotypes in both fermented and 478 

unfermented whole beans. This understanding is crucial for the continual improvement 479 

of NIR models and for developing more effective selection and genetic improvement 480 

strategies in the cocoa sector. 481 

4. Conclusion 482 

This study reaffirms the effectiveness of NIR spectroscopy in conjunction with 483 

multivariate analysis techniques in the authentication of cocoa beans, providing valuable 484 

insights into specific bands associated with crucial biochemical components. Both visible 485 

and infrared spectral regions are efficient for discriminating between fermented and 486 

unfermented whole grains, as well as an LDA with only two wavelengths (472 nm and 487 

636 or 2096 nm and 2278 nm), suggesting the design of specific spectra sensors for 488 

smaller, cheaper, and more accurate applications. Additionally, we highlight that NIR 489 

spectroscopy can capture subtle variations in genetic characteristics. The PLS-DA models 490 

Jo
urn

al 
Pre-

pro
of



23 
 

showed good performance in discriminating cocoa genotypes in both fermented and 491 

unfermented beans, with accuracies of 0.86 and 0.84, respectively. The results have 492 

significant practical implications for the cocoa industry, offering a practical and efficient 493 

solution to address challenges associated with traditional methods of quality control and 494 

authentication. This non-invasive approach aligns with the growing industry focus on 495 

sustainability, efficiency, and the adoption of environmentally friendly methods. 496 

Furthermore, we are investigating the potential of other techniques in the discrimination 497 

and authentication of Amazonian cocoa beans, such as Raman spectroscopy and 498 

Hyperspectral Imaging. 499 
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SUPPLEMENTARY MATERIAL 

 

 

A.  

B.   

Fig. S. 1. Mean spectra of 19 genotypes of dried cocoa beans samples from Amazonia: 668 

A. unfermented; and B. fermented.  669 

  670 

Jo
urn

al 
Pre-

pro
of



29 
 

 671 

Fig. S.2 Principal Component Analysis (PCA) of cocoa beans. A: Score plot showing the 672 

distribution of fermented (F) and unfermented (UF) cocoa beans across the first two 673 

principal components. B: Loadings plot illustrating the contribution of variables (proteins, 674 

lipids, external and internal pH, internal and external total soluble solids in ºBrix) to the 675 

first two principal components.  676 

Table S.1 Characteristics and performances of the Linear Discriminant Analysis (LDA) 677 

models at visible (472 nm and 636 nm) and infrared (2096 nm and 2078 nm) wavelengths 678 

of raw spectra. 679 

Parameters  Visible NIR 

Sensitivity 0.937 1 

Specificity 0.982 1 

Accuracy 0.958 1 

 680 

The optimization criterion for the two-class PLS-DA model is the Area Under the 681 

Receiver Operating Characteristic Curve (AUC). The AUC value represents the model's 682 

overall ability to correctly rank predictions, with the ranking being derived from the 683 

prediction scores and therefore reflecting the model’s ability to classify. This metric is 684 

sensitive to class imbalance (difference in the number of samples of each class) and has 685 

been proven more efficient than the accuracy for binary classifiers. The AUC is calculated 686 

using Eq. (A.1).  687 

 688 

𝐴𝑈𝐶 =  
𝑆𝑓 − 𝑛𝑓(𝑛𝑢 + 1)/2

𝑛𝑓𝑛𝑢
        𝐸𝑞. (𝐴. 1)  689 

With:  690 

Jo
urn

al 
Pre-

pro
of



30 
 

𝑆𝑓 = 𝑆𝑢𝑚 𝑜𝑓 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  691 

𝑛𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 692 

𝑛𝑢 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑢𝑛𝑓𝑒𝑟𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 693 

The three metrics obtained from this are the Specificity, the Sensitivity and the Accuracy.  694 

The Sensitivity represents the models’ ability to detect the positive cases among the 695 

samples that are actually positive. It is derived from the Eq. (A.2).  696 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)    𝐸𝑞. (𝐴. 2)  697 

With:  698 

𝑇𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  699 

𝐹𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  700 

The Specificity indicates the models’ ability to detect negative cases among the samples 701 

that are actually negative. It is obtained with the Eq. A.3. 702 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)        𝐸𝑞. (𝐴. 3)  703 

With:  704 

𝑇𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  705 

𝐹𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  706 

The Accuracy represents the model’s ability to correctly classify a sample and is 707 

calculated using Eq. (A.4). 708 

  709 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑛𝐴/𝑛𝑇        𝐸𝑞. (𝐴. 4)  710 

With:  711 

𝑛𝐴 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒𝑖𝑟 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 (𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑇𝑃712 

+  𝑇𝑁 𝑓𝑜𝑟 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠)  713 

𝑛𝑇 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃714 

+ 𝐹𝑁 𝑓𝑜𝑟 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠)  715 

For multi-class models, where calculating the AUC is computationally expensive, 716 

accuracy was chosen as the optimization criterion. This metric, along with the confusion 717 

matrices, was also employed to evaluate the models' performances. 718 

Reference : (Hossin et M.N 2015) 719 

Biblio: Hossin, Mohammad, et Sulaiman M.N. 2015. « A Review on Evaluation Metrics 720 

for Data Classification Evaluations ». International Journal of Data Mining & 721 

Knowledge Management Process 5 (mars): 01‑11.  722 
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Table S.2 Confusion matrix of the PLS-DA model built on SG data for the 725 

discrimination of the genotypes of fermented cocoa beans. 726 

        Ref 
Pred 

BE10 CA6 CAB208 CAB214 CAB270 CAB324 CAB499 CCN51 IMC67 MA11 MA15 MO1 P7 PA121 PA169 PA195 RB36 RB40 

BE10 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CA6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAB208 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAB214 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

CAB270 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAB324 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 

CAB499 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

CCN51 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 

IMC67 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 

MA11 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 

MA15 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

MO1 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 

P7 0 0 0 0 0 0 0 1 0 0 1 0 5 0 0 0 0 0 

PA121 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 

PA169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

PA195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

RB36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 

RB40 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
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Table S.3. Confusion matrix of the PLS-DA model built on SG data for the discrimination of the genotypes of unfermented cocoa 728 

beans. 729 

RefPred BE10 CA6 CAB208 CAB214 CAB270 CAB314 CAB324 CAB499 CCN51 IMC67 MA11 MA15 MO1 P7 PA121 PA169 PA195 RB36 RB40 

BE10 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

CA6 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAB208 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CAB214 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

CAB270 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAB314 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

CAB324 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 

CAB499 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

CCN51 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 

IMC67 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 

MA11 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 

MA15 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 

MO1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

P7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

PA121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

PA169 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

PA195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

RB36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

RB40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
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Highlights 

Analysis of 19 cocoa genotypes from the Brazilian germplasm bank; 

The visible range is sufficient to discriminate between fermented and unfermented 
beans, as well as an LDA with two wavelengths in both the visible range (472 nm and 
636 nm) and the infrared range (2096 nm and 2278 nm)  

Genetic information captured by NIR was more pronounced in unfermented beans.  
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