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A B S T R A C T

This study evaluates the performance of four Partial Least Squares Regression (PLS) methods, focusing on a new 
Local Partial Least Squares Regression (LPLS) variant integrating wavelet transformation, named WLPLS, for 
analyzing feed using Near-Infrared (NIR) spectroscopy. While traditional PLS methods are effective for many 
spectroscopic applications, their global modeling approach often reduces predictive accuracy in large, hetero
geneous datasets. In contrast, LPLS adapts models to local data characteristics, which can enhance prediction but 
also increase computational demands (power and time). WLPLS seeks to mitigate these demands by incorpo
rating wavelet transformation to reduce data dimensionality while effectively managing spectral variances. This 
research conducts a comparative analysis of WLPLS against traditional PLS, LPLS, and another LPLS pipeline 
reducing data dimensionality: the LPLS on global PLS scores (LPLS-S). The performance of these methods were 
evaluated using a large feed database containing 24,644 samples, analyzing five key constituents: ash, crude 
fibers, fat, moisture, and proteins. The results demonstrate that local approaches outperformed the global PLS 
method for this dataset and that the performance of the local methods were relatively similar to each other. The 
selection of the optimal method therefore depends on the specific requirements of the application, such as dataset 
characteristics and the required prediction speed. Future studies should broaden this comparative framework to 
additional datasets and contexts to ensure they are adapted for diverse applications.

1. Introduction

The development of Local Regression (LR) models has been a sig
nificant advance in the field of chemometrics, especially for the analysis 
of spectroscopic data. The expansion of LR stems from its ability and 
efficiency to handle large and complex datasets, whereas most of the 
currently used near-infrared (NIR) calibration algorithms fail to do so. 
Although these methods, such as Principal Component Regression (PCR) 
and Partial Least Squares Regression (PLS) have proven their efficiency 
in the fields of agronomy, feed, and food, contributing to their world
wide application, their linear approach often leads to a decrease in their 
performance when dealing with large datasets, where an increase in 
overall spectral variance is observed.

This is because these methods rely on a single global model fitted to 
an entire database to analyze any sample, which limits their ability to 
account for local variability within the data [1–3]. LR compensates by 
creating a unique model for each new sample to be predicted. This 

process starts by identifying a set of k-nearest neighbors (kNN) within a 
spectral library, pinpointing precisely where the new spectrum fits 
within the existing data. This step ensures that the selected spectra are 
similar to the spectrum to be analyzed, and also results in a significantly 
better-to-calibrate, reduced variance in these spectra compared to what 
would be observed in a global model approach. This simplifies the 
calibration step, which is subsequently performed on this specific subset 
of samples and involves decomposing the variance into latent compo
nents that are specifically correlated with the component to be pre
dicted. Consequently, the local model tends to be more robust and 
accurate, especially in the case of heterogeneous libraries composed of 
different products or recipes [1]. Numerous LR methods exist, and new 
ones continue to emerge [4–6], but they all share a common foundation.

The first algorithm of this kind is the Locally Weighted Regression 
(LWR) proposed by Naes [7–9]. In this case, nearest neighbors are 
searched for using Euclidean distance and the influence of the neighbors 
on the regression model (in this case PCR) is then weighted according to 
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the distance to the spectrum to be analyzed.
Variations of the LWR quickly emerged and mostly concerned the 

regression method (PCR [7], PLS [5,10], …), the metrics used to select 
the kNN (Mahalanobis distance [7], Euclidian distance [5,10], correla
tion [11], …), and the weight function applied to the calibration objects 
(uniform [10], cubic [7], …). However, these pipelines have a common 
drawback: they all require significant computational power, meaning 
that generating predictions takes considerable time. Other algorithms 
were developed to solve this issue.

With the LOCAL method of Shenk, Westerhaus, and Berzaghi [1,12], 
the nearest neighbors are found by correlation calculations of the 
spectrum to be analyzed with the spectra of the spectral library. In 
addition, and due to the computing power of the PCs available in 1997, 
data points were selected at specific intervals of the spectrum (and 
previously all library spectra) to reduce the number of spectral variables 
and speed up the calculations. However, this step also reduced the in
formation content of the data set. The rank selection for the local PLS 
model is either fixed or the result is automatically calculated by a spe
cific averaging of the results of different ranks.

Data compression in the Local Calibration by Percentile Selection 
(LCPS) [13], in the Local Calibration by Customized Radii Selection 
(LCCRS) [13], and in the Local Partial Least Squares based on global PLS 
scores (LPLS-S) [5] approaches takes place via PLS, i.e. PLS modeling on 
all spectra of a library. The aim is not to perform direct analysis, but to 
replace high-dimensional spectral data with PLS scores, reducing the 
size of the spectral library. The kNN of a new sample to be analyzed are 
therefore found in the new PLS score space (with a unique distance 
metric for each method) and the PLS model is then performed locally 
based on these global scores. The disadvantages are that such a method 
based on global PLS models is specific to a component or property and 
must always be completely recalculated when the library is expanded. In 
addition, these global scores are no longer very specific to the local 
situation of a spectrum to be analyzed. Also, recently, Lesnoff et al. have 
presented a list of different averaging methods that can be easily 
embedded in pipelines of local PLSR, with the objective of automatized 
predictions, and thus represent fast and safe alternatives to methods 
requiring time-consuming calibrations [14].

In this context, a new method combining wavelet transform and LPLS 
has been proposed: The Wavelet Local Partial Least Squares regression 
(WLPLS). The goal of this paper is to assess this new WLPLS method in a 
large and heterogeneous library and to compare its performance with 
the classical approaches of Partial Least Squares Regression (PLS), Local 
Partial Least Squares Regression (LPLS), and Local Partial Least Squares 
Regression based on PLS scores (LPLS-S).

2. Materials and methods

2.1. Introduction to wavelet transform

Wavelet transformation [15–17] is considered a significant break
through in mathematical analysis to process, extract, compress, and 
represent signals and data. In chemistry, it is applied in various fields 
[18,19] like flow injection analysis, chromatography, spectroscopy (UV, 
VIS, NIR, IR, NMR, XRF) [20–23], mass spectrometry, and image pro
cessing [24]. Application categories include data compression, parsi
monious/sparse data representation [16,21], denoising and smoothing 
[15,16,21], baseline/background removal and correction [15], regres
sion and calibration [21,25,26], and classification and pattern recog
nition [27–29].

Wavelets are mathematical functions that transform the original 
signal or data into different frequency components and provide the 
corresponding location information. This has advantages over the 
traditional Fourier transform (FT) method, where only the presence and 
intensity of different frequencies are analyzed, without the information 
on where these frequencies occur.

There are different types of wavelet transformations: continuous 

wavelet transformation (CWT), wavelet package decomposition (WPD), 
and discrete wavelet transformation (DWT). The DWT is the simplest 
and decomposes the signal by applying a high-pass filter, which is fast 
and is detailed here:

Unlike the periodic basis functions in the FT, the wavelet basis 
function has compact support, which enables localization. There are 
several families of wavelet functions with many possible types and 
shapes (Fig. 1). For the frequency analysis, the wavelet transform is 
performed by applying a series of expanding (or shrinking) scales of the 
wavelet function, which form orthogonal bases. Localization is per
formed by translating the scaled wavelet functions over the signal. The 
signal is folded with the series of scaled and translated wavelet func
tions, resulting in the wavelet coefficients.

In the context of wavelet transformations applied to spectroscopic 
data, the Haar-Wavelet, or other simple and common types are sufficient 
because the spectra are decomposed and the coefficients are directly 
used for local regression. For other tasks where reconstruction of the 
original signal is required, the wavelet type and its properties (like 
smoothness) are much more relevant. The transform and the coefficients 
are orthogonal, which is an excellent property that allows the co
efficients to be selected or combined as required.

The decomposition of the spectral data can be better understood by 
looking at a simulated spectrum containing two absorbance bands, a 
baseline, and noise (Fig. 2). The coefficients are classified into wavelet 
bands (j) representing specific frequency ranges that correspond to the 
expanding scales used in the wavelet transformation (Fig. 3). The band j 
= 0 represents the low-frequency residual part of the decomposition 
(“approximation coefficients”) and is of no use in most cases. The 
“detailed coefficients” start with the low-frequency band (j = 1), where 
only two coefficients cover the whole spectral range (signal). In the next 
band, the number of coefficients is doubled, and the analyzed frequency 
is increased respectively. The highest band(s) show mainly noise unless 
the signal is smooth.

In the transformed simulated signal, it is visible which coefficients 
are important or valuable for the two absorbance bands − the relevant 
information of the spectroscopic application. The valuable coefficients 
are those in the mid-frequency bands with values above the noise level. 
The wavelet bands below band 3 represent mainly baseline or unim
portant low-frequency information, while the upper bands 7 and 8 
represent noise. It is important to note that the coefficients increase with 
increasing absorbance, which means that Beer’s law remains valid.

After the wavelet transformation, the appropriate coefficients are 
selected manually, either individually or by frequency band, depending 
on the application. As an alternative to normalizing the spectra, the 
selected coefficients can be normalized, which is beneficial because the 
higher frequency bands are normally truncated and noise is removed.

2.2. Local Partial Least Squares Regression (LPLS)

Local Partial Least Squares Regression (LPLS) is a specific instance of 
Local Weighted Regression (LWR) where all selected samples (nearest 
neighbors) have equal weights in the regression process. This technique 
is commonly utilized in the chemometric field [5,30]. Typically, the 
Mahalanobis or Euclidian distances are used as the metric distance, PLS 
is the regression method employed, and the weight function is a vector 
of values 1/k, where k is the number of nearest neighbors.

2.3. Combining wavelet transform with LPLS

A new wavelet-based Local Regression method, the Wavelet Local 
Partial Least Squares regression (WLPLS) is proposed. The idea of 
combining wavelet theory with the LPLS method comes from the pos
sibility of using wavelet coefficients out of selected wavelet bands to 
span a data space defining the spectral library for the kNN search step. 
The coefficients are also used directly for the LPLS modeling step for a 
prediction of an analyzed spectrum.
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2.4. Dataset

For this study, a database of 24,644 samples of feed products (for
mulations) built by the Walloon Agricultural Research Centre (CRA-W) 
was used. This database shows high variability as described by 
Fernández Pierna et al. [31,32]. Spectral data for the samples were ob
tained using a benchtop XDS spectrometer (FOSS Analytics), covering a 
range from 1100 to 2498 nm with a digital resolution of 2 nm. Reference 
analytical methods were used to evaluate the content of five constituents 
within the samples: Ash (ASH), crude fibers (CF), fat (FAT), moisture 
(MOIST), and protein (PROT). The values of ASH, CF, FAT, MOIST, and 
PROT are expressed in percentages of the total weight of the sample.

It is important to note that there is variability between the number of 
samples available for each of these constituents. For instance, the 
number of samples with associated MOIST content was much higher 
than the number of samples with associated CF values. This is because 
the database is composed of several products which underwent various 
sets of analyses. The related information and statistics of the constitu
ents’ values are summarized in Table 1.

2.5. Comparative Methodology: PLS vs LPLS vs LPLS-S vs WLPLS

This section describes how the four techniques (PLS, LPLS, LPLS-S, 
and WLPLS) were applied to this database. A quick summary of the 
procedures followed for the local regressions can be visualized in Fig. 4.

Before the models’ construction, the database was randomly divided 
into three datasets: 60 % of the samples constituted the calibration set 
(14,786 samples), 15 % the optimization set (3,696 samples), and the 
remaining 25 % formed the validation set (6,162 samples).

To ensure a fair comparison of the models’ performance, the same 

datasets were used across the different methods. However, while the 
optimization and the validation sets served the same purpose for both 
global and local techniques, the calibration set had to be used differ
ently. With the global PLS, this set was used specifically to train the PLS 
models. For each of the LPLS, LPLS-S, and WLPLS, this calibration set 
was used as a repository in which to find a subset of samples (nearest 
neighbors), which was then used to build the PLS models. Therefore, the 
calibration set will be referred to as the spectral library for the local 
methods.

Two different metrics were used to evaluate the performance of the 
models. Those metrics are the Root Mean Square Error of Prediction 
(RMSEP) and the Residual Prediction Deviation (RPD). The RMSEP 
(Equation (1)) provides a measure of the average magnitude of the er
rors between predicted and observed values. A lower RMSEP value in
dicates better predictive accuracy. 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(1) 

where n is the number of observations, yi is the observed value, and ŷi is 
the predicted value.

The RPD (Equation (2)) is a dimensionless ratio that compares the 
standard deviation of the observed values to the RMSEP. Higher RPD 
values indicate better model performance. According to Chang et al. 
[33], the interpretation of RPD values is as follows: RPD below 1.4 in
dicates poor model performance, RPD values between 1.4 and 2 indicate 
moderate performance, and RPD values greater than 2 have good pre
dictive ability. 

RPD =
SD

RMSEP
(2) 

Fig. 1. Examples of wavelet basis functions of the common Daubechies wavelet family including the simple Haar Wavelet (Daubechies Type 1).

Fig. 2. Simulated spectrum containing two absorbance bands, baseline, and noise added.
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where SD is the standard deviation of the observed values.
Using both RMSEP and RPD provides a more comprehensive evalu

ation of the models’ predictive performance. The RMSEP offers a direct 
measure of prediction error in the same units as the response variable, 
which is intuitive and easy to interpret. However, it does not account for 
the variability in the dataset. Conversely, the RPD contextualizes the 
prediction error relative to the variability in the data, offering a 
dimensionless measure of predictive power. This enables the qualifica
tion of model performance regardless of the units or the scales of the 
data. By considering both metrics, we obtain a balanced view of model 
performance, understanding both the absolute error (RMSEP) and the 
error relative to the data variability (RPD).

For the construction of the PLS models, analyses were carried out on 
each constituent individually (Ash, CF, FAT, MOIST, and PROT) and 
samples with no associated constituent value were removed from the 
datasets (calibration, optimization, and validation). This led to impor
tant differences in dataset size between the constituents (Table 2).

The calibration set was then used to train the models (on the raw and 
pre-processed data). 60 models with different parameters (in this case 

preprocessing and rank of the models) values (Table 3) were constructed 
and applied to the optimization dataset.

The RMSEP values of those models on the optimization dataset were 
assessed and the model giving the lowest RMSEP was selected as the 
final model. The preprocessing (or absence of preprocessing) associated 
with the best model was retained as well.

The final model and preprocessing (or none) were then applied to the 
validation dataset and its performance was assessed with the RMSEP and 
the RPD.

The LPLS models were then built. As for the PLS models, the analyses 
were carried out on each constituent individually. However, the samples 
with no associated constituent value were only removed from the opti
mization and the validation set. The objective behind keeping samples 
with no associated constituent value in the spectral library is to be able 
to compare the LPLS with the WLPLS which applies a constraint related 
to those specific samples: When a sample to be predicted is presented to 
this LPLS algorithm, it searches for its kNN based on the Mahalanobis 
distance. It then removes the neighbors for which no constituent value is 
found. If less than 40 neighbors remain, no prediction is performed, and 
a “not available” value (NA) is assigned to the sample. Taking this 
constraint into account, 360 models with different parameters (pre
processing, number of nearest neighbors, and model rank) values 
(Table 3) were applied to the samples of the optimization set. The 
nearest neighbors of the samples within the spectral library were iden
tified and whenever a sample had more than 40 nearest neighbors with 
reference values, a PLS model was built, and a prediction was per
formed. The RMSEP values of the models were then calculated on the 
samples with an assigned prediction. The parameters associated with the 
lowest RMSEP were retained. The process differs from PLS in that a 
single LPLS model is built for each sample to be predicted. However, 
parameters were optimized globally and not for each model.

Predictions were performed on the validation samples with the 

Fig. 3. Wavelet transformation of the simulated spectrum to several frequency bands with wavelet coefficients. The indices represent the ID of the wavelet 
coefficients.

Table 1 
Descriptive statistics of the constituent contents in the database: Number of 
samples (N), minimum (Min), maximum (Max), mean, and standard deviation 
(Std). All values, except the number of samples, are expressed in percentages of 
the total weight of the sample (%).

Constituents N Min Max Mean Std

ASH 20,065 0.800 37.000 7.320 3.262
CF 5,423 0.100 22.200 5.319 2.776
FAT 7,640 0.600 31.600 5.253 3.793
MOIST 23,392 2.040 16.700 11.356 1.822
PROT 22,371 6.800 62.300 20.473 8.098
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retained pre-processing and parameters. RMSEP and RPD were calcu
lated on the samples with assigned predictions. The number of samples 
with NA values was also evaluated and considered in the models’ 
comparison.

The LPLS-S models’ construction follows the same procedure, except 
that it starts with a dimensionality reduction of the spectra of the PLS 
datasets, replacing the spectra with the latent variable scores of the 
model (Fig. 4). The parameter associated with this additional step 
(number of latent variables retained after dimensionality reduction) was 
optimized along with the others (Table 3). A total of 2,970 models with 
different parameter values were tested.

Finally, the WLPLS construction follows the same procedure as LPLS 
except that it starts with a discrete wavelet transformation of the spectra 
of the three datasets (Fig. 4). The parameters associated with this 
additional step (compression level and preprocessing of the coefficients) 
were optimized along with the others (Table 3). A total of 2,160 models 
with different parameter values were tested.

The RMSEP (calculated on the validation sets) of the four algorithms 
were compared to determine which technique yielded the best perfor
mance. Since some models resulted in unpredicted values for a few 
samples, no statistical tests were carried out for the comparison.

2.6. Software

The PLS, LPLS, and LPLS-S models were built on R version 4.2.2 [34]

with the packages rchemo [35] and mdatools [36].
The Wavelet Local Partial Least Squares regression (WLPLS) has been 

proposed by Bruker Corporation in their module OPUS: QUANT 3 
(Bruker Optics GmbH & Co. KG). The WLPLS models were built with this 
module.

Fig. 4. Visualization of the three local approaches compared in this work.

Table 2 
Number of samples with associated constituent values available in each of the 
datasets.

Datasets ASH CF FAT MOIST PROT

Calibration/Spectral Library 12,059 3,327 4,601 14,037 13,394
Optimization 3,003 798 1,138 3,530 3,366
Validation 5,003 1,298 1,901 5,825 5,611

Table 3 
Parameters tested for the models’ optimization. SNV stands for Standard Normal 
Variate.

PLS ​
Preprocessing 1st derivative − window size of 13/ 

SNV/None
Number of latent variables (rank) 1 to 20

LPLS
Preprocessing 1st derivative − window size of 13/ 

SNV/None
Number of nearest neighbors 100/200/300/400/500/1000
Number of latent variables (rank) 1 to 20

LPLS-S
Preprocessing 1st derivative − window size of 13/ 

SNV/None
Number of variables after dimensionality 

reduction
10 to 20

Number of nearest neighbors 100/200/300/400/500/1000
Number of latent variables (rank) 1 to 20

WLPLS
Preprocessing 1st derivative − window size of 13/ 

SNV/None
Number of nearest neighbors 100/200/300/400/500/1000
Compression level (wavelets) 5/6/7
Preprocessing of coefficients (wavelets) SNV/None
Number of latent variables (rank) 1 to 20
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3. Results and discussion

3.1. Performance of the models

Despite the variability of the feed database, the PLS regression 
allowed high-quality predictions for all the parameters, with RPD higher 
than 2 (the minimum RPD being 2.73). However, the local methods 
regressions resulted in even better RPDs (4.37 minimum) (Table 4), and 
therefore in higher-quality predictions for all constituents. Compared to 
global PLS and depending on the predicted parameter, LPLS led to a 
reduction in RMSEP of between 11–39 %, LPLS-S of 2–35 %, and WLPLS 
2–39 % (FAT being associated with the lowest reductions and ASH the 
highest) (Fig. 5).

As expected and already highlighted in several works dealing with 
large and complex datasets [3,13,37], local regressions enabled a clear 
improvement in the performance of the prediction of the nutritional 
values of feed formulations (Fig. 5). The local methods showed smaller 
differences between them and their performance remain relatively 
similar, although the performance of the LPLS-S algorithm seem slightly 
lower and the WLPLS algorithm slightly higher (Fig. 5).

Another observation made across the four evaluated methods con
cerns their performance when applied to raw versus preprocessed data 
(Fig. 5). All methods exhibited similar or superior performance with 
preprocessed data. However, the consistency of the RMSEP differences 
varied. For the LPLS-S models, performance on preprocessed data was 
comparable to that of the raw data, with RMSEP variations from 0 to 11 
%. Overall, PLS and WLPLS performed slightly better with preprocessed 
data, with RMSEP variations ranging from 8 % to 33 % for PLS and from 
6 % to 20 % for WLPLS. In contrast, LPLS showed considerable 
improvement with preprocessed data, with RMSEP variations between 
41 % and 73 %. This seems to indicate that preprocessing is not as 
necessary when working with LPLS-S and WLPLS algorithms as with 
LPLS, however, this could be due to the nature of the feed database.

The wavelet transform in WLPLS likely enhances the model’s capa
bility by separating the chemical signal from interfering artifacts, such 
as baseline shifts, noise, and other distortions common in NIR spec
troscopy (e.g., scattering, multiplicative, and additive effects). By 
breaking down the spectral data into frequency bands, the wavelet 
transform isolates relevant chemical information, giving less weight to 
these artifacts in the latent variable construction. This separation re
duces the influence of non-chemical artifacts on the final model. In 
contrast, other local PLS models process all spectral features together, 
including baseline shifts and noise, although LPLS-S partially reduces 
these effects in an initial PLS step. While preprocessing usually helps to 
manage such artifacts, the wavelet transform seems especially effective 
in minimizing them in this case. This also explains why the pre
processing steps seem to have a lower impact on the WLPLS 
performance.

3.2. Summarized comparison of the methods

As shown by the results, local methods take into account the local 
variability of the feed database. This reinforces the assumption that local 
methods should always be tested when dealing with large and 

heterogeneous datasets such as those found in spectral studies of feed 
and forage (samples of different origins, dates, composed of diverse 
ingredients, …) [5,6]. However, it is essential to keep in mind that each 
method has its own drawbacks and advantages, and that the choice of 
algorithm depends on the dataset.

As opposed to the local algorithm, PLS is fast and easy to interpret 
and implement on instruments for real-time predictions. As only one 
model is created, global VIP scores can be investigated, which can 
reinforce the relevance of the model. The number of parameters to 
optimize remains low.

LPLS is also a relatively straightforward method, but it requires 
significant computational power and time, making it challenging to 
implement for real-time analyses. The LPLS-S and WLPLS methods 
address this limitation by reducing the size of the dataset and speeding 
up the method without losing relevant information. Dimensionality 
reduction is especially beneficial for large libraries and method transfer 
e.g., in a network.

Those methods are, however, more complex and require more 
extensive optimization. LPLS-S presents the advantages of relying on a 
simple and widely known technique for its dimensionality reduction 
step and downsizing the dataset to a few variables e.g. from 10 to 20 
latent variables for a spectrum with 700 data points. With the WLPLS 
approach, as only a few wavelet bands with a low total number of co
efficients are used, the spectral data is compressed as well, but the 
number of transformed variables is larger e.g., from 60 to 100 co
efficients for a spectrum with 700 data points. However, as it relies on 
the wavelet transform technique, WLPLS has some additional distinct 
features: 

- As the spectra are interpolated and transformed one by one, a library 
can be easily formed and modified without the need for recalcula
tions. This contrasts with approaches like LPLS-S, where a change in 
the composition of the library requires recalculation of the PLS 
scores. This can affect the whole data structure of the library and 
change the performance.

- It is not necessary to select the spectral range or to preprocess the 
spectral data. The wavelet transform works like a pretreatment in the 
sense of baseline removal and noise suppression simply by selecting 
the wavelet bands. Due to the localized character of the wavelet 
transform, the pretreatment properties are also applied locally. 
Similarly, in this study, LPLS-S appears to have targeted specific 
patterns related to the predicted constituent before employing the 
LPLS algorithm on the transformed data matrix. Transforming the 
original data matrix into a matrix of latent variable scores using the 
LPLS algorithm could also minimize unwanted variations and noise.

- Since WLPLS assigns weights to the orthogonal coefficients through 
the latent variables in the PLS process, there is no need to select 
coefficients individually within the frequency bands, which makes 
the method setup straightforward.

4. Conclusion

In the ocean of LPLS pipelines, the integration of wavelet trans
formations with LPLS is not a silver bullet, but it provides specific ad
vantages. These advantages, which can also be observed with LPLS-S 
and other methodologies not studied here, suggest a nuanced 
improvement over traditional methods. However, this paper does not 
pinpoint the combination of wavelet and LPLS method as the best 
choice. The optimal methodology depends on the specific dataset to 
which it is applied and the goal of its users. Therefore, researchers 
should select the method that best suits their objectives and the unique 
characteristics of their data.

This study was limited to a single dataset, which restricts the scope of 
our conclusions. Nonetheless, our analysis has provided a better un
derstanding of the comparative performance of these techniques. The 
enhanced predictive accuracy and processing efficiency observed in the 

Table 4 
Residual Prediction Deviations obtained with the four algorithms applied to five 
parameters of the feed database. Residual Prediction Deviation values obtained 
with the best calibration models (built on preprocessed data for all models 
except for WLPLS on FAT built on raw data) are displayed in this table.

ASH CF FAT MOIST PROT

PLS 2.73 4.23 7.67 3.70 9.11
LPLS 4.51 4.75 9.26 5.29 13.88
LPLS-S 4.37 4.41 7.23 4.85 11.44
WLPLS 4.50 4.98 7.78 5.36 13.94
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local methods (LPLS, LPLS-S, and WLPLS) suggest their potential for 
significant improvements in the handling of complex spectral data, as 
indicated by other research in the field [1–3,38]. The LPLS-S and WLPLS 
showed potential for real-time application by reducing computational 
time while keeping high performance even without preprocessing. 
These results underline the need for tailor-made analytical strategies in 
spectroscopic applications, particularly when handling heterogeneous 
data such as feed and forage libraries.

To fully understand the contexts in which each method can provide 
the most benefit, further research with a wide range of datasets is 
essential. Expanding the scope of data types and analytical scenarios will 
help clarify the conditions under which LPLS-S and WLPLS outperform 
traditional LPLS methods. This future research will be crucial in guiding 
users to make informed decisions on the most appropriate methodolo
gies for their specific analytical needs.
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